4 research outputs found
Vibronic Lineshapes of PTCDA Oligomers in Helium Nanodroplets
Oligomers of the organic semiconductor PTCDA are studied by means of helium
nanodroplet isolation (HENDI) spectroscopy. In contrast to the monomer
absorption spectrum, which exhibits clearly separated, very sharp absorption
lines, it is found that the oligomer spectrum consists of three main peaks
having an apparent width orders of magnitude larger than the width of the
monomer lines. Using a simple theoretical model for the oligomer, in which a
Frenkel exciton couples to internal vibrational modes of the monomers, these
experimental findings are nicely reproduced. The three peaks present in the
oligomer spectrum can already be obtained taking only one effective vibrational
mode of the PTCDA molecule into account. The inclusion of more vibrational
modes leads to quasi continuous spectra, resembling the broad oligomer spectra
Spectroscopy of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) attached to rare gas samples: Clusters vs. bulk matrices. II. Fluorescence emission spectroscopy
The interaction between 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) molecules and solid rare gas samples is studied by means of fluorescence emission spectroscopy. Laser-excited PTCDA-doped large argon, neon, and para-hydrogen clusters along with PTCDA embedded in helium nanodroplets are spectroscopically characterized with respect to line broadening and shifting. A fast non-radiative relaxation is observed before a radiative decay in the electronic ground state takes place. In comparison, fluorescence emission studies of PTCDA embedded in bulk neon and argon matrices result in much more complex spectral signatures characterized by a splitting of the different emission lines. These can be assigned to the appearance of site isomers of the surrounding matrix lattice structure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759445
Size dependent transition to solid hydrogen and argon clusters probed via spectroscopy of PTCDA embedded in helium nanodroplets
Complexes made of either Ar-N or (H-2)(N) clusters (N = 1-170) and a single PTCDA molecule (3,4,9,10-perylene-tetracarboxylic-dianhydride) are assembled inside helium droplets and spectroscopically studied via laser-induced fluorescence spectroscopy. The frequency shift and line-broadening are analyzed as a function of N and of the pick-up order of the PTCDA and cluster material in order to track liquid or solid properties of the clusters. For argon, the solid phase is observed for N > 10 above which the pick-up order dramatically influences the localization of the chromophore with respect to the Ar cluster. If the droplets are doped first with Ar, the chromophore remains on the surface of a solid cluster whereas for the reversed pick-up order the molecule is surrounded by an argon shell. At N < 10 wetting and the formation of the first solvation shell are observed. For para-hydrogen, a transition to the solid is observed at N similar to 20-25, confirming previous theoretical predictions on the existence of a liquid-like phase at such small sizes, even below the bulk hydrogen freezing temperature. (C) 2014 AIP Publishing LLC
Recommended from our members
Ultrafast dynamics in helium nanodroplets probed by femtosecond time-resolved EUV photoelectron imaging
The dynamics of electronically excited helium nanodroplets are studied by femtosecond time-resolved photoelectron imaging. EUV excitation into a broad absorption band centered around 23.8 eV leads to an indirect photoemission process that generates ultraslow photoelectrons. A 1.58 eV probe pulse transiently depletes the indirect photoemission signal for pump-probe time delays <200 fs and enhances the signal beyond this delay. The depletion is due to suppression of the indirect ionization process by the probe photon, which generates a broad, isotropically emitted photoelectron band. Similar time scales in the decay of the high energy photoelectron signal and the enhancement of the indirect photoemission signal suggest an internal relaxation process that populates states in the range of a lower energy droplet absorption band located just below the droplet ionization potential (IP {approx} 23.0 eV). A nearly 70% enhancement of the ultraslow photoelectron signal indicates that interband relaxation plays a more dominant role for the droplet de-excitation mechanism than photoemission