159 research outputs found

    A proposed potential role for increasing atmospheric CO2 as a promoter of weight gain and obesity

    Get PDF
    Human obesity has evolved into a global epidemic. Interestingly, a similar trend has been observed in many animal species, although diet composition, food availability and physical activity have essentially remained unchanged. This suggests a common factor—potentially an environmental factor affecting all species. Coinciding with the increase in obesity, atmospheric CO2 concentration has increased more than 40%. Furthermore, in modern societies, we spend more time indoors, where CO2 often reaches even higher concentrations. Increased CO2 concentration in inhaled air decreases the pH of blood, which in turn spills over to cerebrospinal fluids. Nerve cells in the hypothalamus that regulate appetite and wakefulness have been shown to be extremely sensitive to pH, doubling their activity if pH decreases by 0.1 units. We hypothesize that an increased acidic load from atmospheric CO2 may potentially lead to increased appetite and energy intake, and decreased energy expenditure, and thereby contribute to the current obesity epidemic

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314

    Associations between APOE Variants and Metabolic Traits and the Impact of Psychological Stress

    Get PDF
    In a previous study, we observed that associations between APOE rs439401 and metabolic traits were moderated by chronic stress. Thus, in a population of stressed and non-stressed Danish men, we examined whether associations between APOE rs439401 and a panel of metabolic quantitative traits, all metabolic traits which may lead to T2D and CVD were moderated by psychological stress.Obese young men (n = 475, BMI ≥ 31.0 kg/m(2)) and a randomly selected control group (n = 709) identified from a population of 141,800 men were re-examined in two surveys (S-46: mean age 46, S-49: mean age 49 years) where anthropometric and biochemical measures were available. Psychological stress factors were assessed by a self-administered 7-item questionnaire. Each item had the possible response categories "yes" and "no" and assessed familial problems and conflicts. Summing positive responses constituted a stress item score, which was then dichotomized into stressed and non-stressed. Logistic regression analysis, applying a recessive genetic model, was used to assess odds ratios (OR) of the associations between APOE rs439401 genotypes and adverse levels of metabolic traits.The APOE rs439401 TT-genotype associated positively with BMI (OR = 1.09 [1.01; 1.17]), waist circumference (OR = 1.09 [1.02; 1.17]) in stressed men at S-46. Positive associations were observed for fasting plasma glucose (OR = 1.42 [1.07; 1.87]), serum triglycerides (OR = 1.41 [1.05; 1.91]) and with fasting plasma insulin (OR = 1.48 [1.05; 2.08]) in stressed men at S-49. Rs439401 TT-genotype also associated positively with surrogate measures of insulin resistance (HOMA-IR; OR = 1.21 [1.03; 1.41]) and inversely with insulin sensitivity (Stumvoll index; OR = 0.90 [0.82; 0.99], BIGTT-S(I); OR = 0.60 [0.43; 0.85]) in stressed men. No significant associations were observed in non-stressed men, albeit the estimates showed similar but weaker trends as in stressed men.The present results suggest that the APOE rs439401 TT-genotype is associated with an adverse metabolic profile in a population of psychologically stressed Danish men

    FTO Gene Associated Fatness in Relation to Body Fat Distribution and Metabolic Traits throughout a Broad Range of Fatness

    Get PDF
    A common single nucleotide polymorphism (SNP) of FTO (rs9939609, T/A) is associated with total body fatness. We investigated the association of this SNP with abdominal and peripheral fatness and obesity-related metabolic traits in middle-aged men through a broad range of fatness present already in adolescence.Obese young Danish men (n = 753, BMI > or = 31.0 kg/m(2)) and a randomly selected group (n = 879) from the same population were examined in three surveys (mean age 35, 46 and 49 years, respectively). The traits included anthropometrics, body composition, oral glucose tolerance test, blood lipids, blood pressure, fibrinogen and aspartate aminotransferase. Logistic regression analysis was used to assess the age-adjusted association between the phenotypes and the odds ratios for the FTO rs9939609 (TT and TA genotype versus the AA genotype), for anthropometrics and body composition estimated per unit z-score. BMI was strongly associated with the AA genotype in all three surveys: OR = 1.17, p = 1.1*10(-6), OR = 1.20, p = 1.7*10(-7), OR = 1.17, p = 3.4*10(-3), respectively. Fat body mass index was also associated with the AA genotype (OR = 1.21, p = 4.6*10(-7) and OR = 1.21, p = 1.0*10(-3)). Increased abdominal fatness was associated with the AA genotype when measured as waist circumference (OR = 1.21, p = 2.2*10(-6) and OR = 1.19, p = 5.9*10(-3)), sagittal abdominal diameter (OR = 1.17, p = 1.3*10(-4) and OR = 1.18, p = 0.011) and intra-abdominal adipose tissue (OR = 1.21, p = 0.005). Increased peripheral fatness measured as hip circumference (OR = 1.19, p = 1.3*10(-5) and OR = 1.18, p = 0.004) and lower body fat mass (OR = 1.26, p = 0.002) was associated with the AA genotype. The AA genotype was significantly associated with decreased Stumvoll insulin sensitivity index (OR = 0.93, p = 0.02) and with decreased non-fasting plasma HDL-cholesterol (OR = 0.57, p = 0.037), but not with any other of the metabolic traits. However, all significant results for both body fat distribution and metabolic traits were explained by a mediating effect of total fat mass.The association of the examined FTO SNP to general fatness throughout the range of fatness was confirmed, and this association explains the relation between the SNP and body fat distribution and decreased insulin sensitivity and HDL-cholesterol. The SNP was not significantly associated with other metabolic traits suggesting that they are not derived from the general accumulation of body fat

    Meta-analysis on the effect of the N363S polymorphism of the glucocorticoid receptor gene (GRL) on human obesity

    Get PDF
    BACKGROUND: Since both excess glucocorticoid secretion and central obesity are clinical features of some obese patients, it is worthwhile to study a possible association of glucocorticoid receptor gene (GRL) variants with obesity. Previous studies have linked the N363S variant of the GRL gene to increased glucocorticoid effects such as higher body fat, a lower lean-body mass and a larger insulin response to dexamethasone. However, contradictory findings have been also reported about the association between this variant and obesity phenotypes. Individual studies may lack statistical power which may result in disparate results. This limitation can be overcome using meta-analytic techniques. METHODS: We conducted a meta-analysis to assess the association between the N363S polymorphism of the GRL gene and obesity risk. In addition to published research, we included also our own unpublished data -three novel case-control studies- in the meta-analysis The new case-control studies were conducted in German and Spanish children, adolescents and adults (total number of subjects: 1,117). Genotype was assessed by PCR-RFLP (Tsp509I). The final formal meta-analysis included a total number of 5,909 individuals. RESULTS: The meta-analysis revealed a higher body mass index (BMI) with an overall estimation of +0.18 kg/m(2 )(95% CI: +0.004 to +0.35) for homo-/heterozygous carriers of the 363S allele of the GRL gene in comparison to non-carriers. Moreover, differences in pooled BMI were statistically significant and positive when considering one-group studies from the literature in which participants had a BMI below 27 kg/m(2 )(+ 0.41 kg/m(2 )[95% CI +0.17 to +0.66]), but the differences in BMI were negative when only our novel data from younger (aged under 45) and normal weight subjects were pooled together (-0.50 kg/m(2 )[95% CI -0.84 to -0.17]). The overall risk for obesity for homo-/heterozygous carriers of the 363S allele was not statistically significant in the meta-analysis (pooled OR = 1.02; 95% CI: 0.56–1.87). CONCLUSION: Although certain genotypic effects could be population-specific, we conclude that there is no compelling evidence that the N363S polymorphism of the GRL gene is associated with either average BMI or obesity risk

    Polymorphisms of Serotonin Receptor 2A and 2C Genes and COMT in Relation to Obesity and Type 2 Diabetes

    Get PDF
    BACKGROUND:Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS:In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2)) and a randomly selected group (n = 831) were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49). Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat-BMI (OR = 1.08, CI = 1.01-1.16). The SNPs were associated with a number of physiological variables; most importantly 5HT2C rs3813929 T-allele was associated with glucose (OR = 4.56, CI = 1.13-18.4) and acute insulin response (OR = 0.65, CI = 0.44-0.94) in S-49. COMT rs4680 GG-genotype was associated with glucose (OR = 1.04, CI = 1.00-1.09). Except for an association between 5HT2A rs6311 and total-cholesterol at both surveys, significant in S-46 (OR = 2.66, CI = 1.11-6.40), no significant associations were observed for the other phenotypes. Significant associations were obtained when combined genotype of 5HT2C rs3813929 and COMT rs4680 were examined in relation to BMI (OR = 1.12, CI = 1.03-1.21), fat-BMI (OR = 1.22, CI = 1.08-1.38), waist (OR = 1.13, CI = 1.04-1.22), and cholesterol (OR = 5.60, CI = 0.99-31.4). Analyses of impaired glucose tolerance (IGT) and type 2 diabetes (T2D) revealed, a 12.3% increased frequency of 5HT2C rs3813929 T-allele and an 11.6% increased frequency of COMT rs4680 GG-genotype in individuals with IGT or T2D (chi(2), p = 0.05 and p = 0.06, respectively). Examination of the combined genotypes of 5HT2C and COMT showed a 34.0% increased frequency of IGT or T2D (chi(2), p = 0.01). CONCLUSIONS:The findings lend further support to the involvement of serotonin, noradrenaline and dopamine pathways on obesity and glucose homeostasis, in particular when combined genotype associations are explored

    Glucocorticoid receptor gene polymorphisms do not affect growth in fetal and early postnatal life. The Generation R Study

    Get PDF
    Background: Glucocorticoids have an important role in early growth and development. Glucocorticoid receptor gene polymorphisms have been identified that contribute to the variability in glucocorticoid sensitivity. We examined whether these glucocorticoid receptor gene polymorphisms are associated with growth in fetal and early postnatal life.Methods: This study was embedded in a population-based prospective cohort study from fetal life onwards. The studied glucocorticoid receptor gene polymorphisms included BclI (rs41423247), TthIIII (rs10052957), GR-9β (rs6198), N363S (rs6195) and R23K (rs6789 and6190). Fetal growth was assessed by ultrasounds in second and third trimester of pregnancy. Anthropometric measurements in early childhood were performed at birth and at the ages of 6, 14 and 24 months postnatally. Analyses focused on weight, length and head circumference. Analyses were based on 2,414 healthy, Caucasian children.Results: Glucocorticoid receptor gene polymorphisms were not associated with fetal weight, birth weight and early postnatal weight. Also, no associations were found with length and head circumference. Neither were these polymorphisms associated with the risks of low birth weight or growth acceleration from birth to 24 months of age.Conclusions: We found in a large population-based cohort no evidence for an effect of known glucocorticoid receptor gene polymorphisms on fetal and early post

    Further Support to the Uncoupling-to-Survive Theory: The Genetic Variation of Human UCP Genes Is Associated with Longevity

    Get PDF
    In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly

    Early influences on cardiovascular and renal development

    Full text link
    corecore