5 research outputs found

    Adversarial attacks and adversarial robustness in computational pathology.

    Get PDF
    Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks

    Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology.

    Get PDF
    Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but markedly different approaches perform relative to each other. We implemented and systematically compared six methods in six clinically relevant end-to-end prediction tasks using data from N=2980 patients for training with rigorous external validation. We tested three classical weakly-supervised approaches with convolutional neural networks and vision transformers (ViT) and three MIL-based approaches with and without an additional attention module. Our results empirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we report significant performance differences for clinically relevant tasks of mutation prediction in colorectal, gastric, and bladder cancer. In these mutation prediction tasks, classical weakly-supervised workflows outperformed MIL-based weakly-supervised methods for mutation prediction, which is surprising given their simplicity. This shows that new end-to-end image analysis pipelines in computational pathology should be compared to classical weakly-supervised methods. Also, these findings motivate the development of new methods which combine the elegant assumptions of MIL with the empirically observed higher performance of classical weakly-supervised approaches. We make all source codes publicly available at https://github.com/KatherLab/HIA, allowing easy application of all methods to any similar task

    Author Correction:Pan-cancer image-based detection of clinically actionable genetic alterations (Nature Cancer, (2020), 1, 8, (789-799), 10.1038/s43018-020-0087-6)

    No full text
    In the version of this article initially published, the sample size (n = 794) was incorrect in Fig. 2f and Extended Data Fig. 4a,e; the correct sample size is ‘n = 397’. The sample size (n = 826) was also incorrect in Fig. 2h and Extended Data Fig. 4q,u; the correct sample size is ‘n = 413’. Also, the values in Supplementary Table 2, row ‘TCGA-HNSC’, column ‘Quality OK and tumor on slide’ (424, 424) were incorrect;the correct values are ‘457, 439’. The errors have been corrected in the HTML and PDF versions of the article

    Bacterial pyrogenic exotoxins as superantigens

    No full text
    corecore