47 research outputs found

    Вплив екологічного стану Донецького регіону на його демографічний розвиток

    Get PDF
    В статті розглянуто важливу проблему впливу забрудненості навколишнього природного середовища на захворюваність та смертність в регіоні. Визначено кореляційну залежність між обсягом викидів забруднюючих речовин та окремими видами захворюваності, а також ступінь їх впливу, побудовано функції, що описують їх.В статье рассмотрена важная проблема влияния загрязненности окружающей естественной среды на заболеваемость и смертность в регионе. Определена корреляционная зависимость между объемом выбросов загрязняющих веществ и отдельными видами заболеваемости, а также степень их влияния, построены функции, которые описывают их.In the article the important problem of influence of muddiness of natural environment is considered on morbidity and death rate in a region. Certainly cross-correlation dependence between the volume of extrass of contaminents and separate types of morbidity, and also degree of their influence, functions which describe them are built. Keywords: environment

    Run Time Models in Adaptive Service Infrastructure

    Full text link
    Software in the near ubiquitous future will need to cope with vari- ability, as software systems get deployed on an increasingly large diversity of computing platforms and operates in different execution environments. Heterogeneity of the underlying communication and computing infrastruc- ture, mobility inducing changes to the execution environments and therefore changes to the availability of resources and continuously evolving requirements require software systems to be adaptable according to the context changes. Software systems should also be reliable and meet the user's requirements and needs. Moreover, due to its pervasiveness, software systems must be de- pendable. Supporting the validation of these self-adaptive systems to ensure dependability requires a complete rethinking of the software life cycle. The traditional division among static analysis and dynamic analysis is blurred by the need to validate dynamic systems adaptation. Models play a key role in the validation of dependable systems, dynamic adaptation calls for the use of such models at run time. In this paper we describe the approach we have un- dertaken in recent projects to address the challenge of assessing dependability for adaptive software systems

    Hepatic P450 Enzyme Activity, Tissue Morphology and Histology of Mink (Mustela vison) Exposed to Polychlorinated Dibenzofurans

    Get PDF
    Dose- and time-dependent effects of environmentally relevant concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQ) of 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of these two congeners on hepatic P450 enzyme activity and tissue morphology, including jaw histology, of adult ranch mink were determined under controlled conditions. Adult female ranch mink were fed either TCDF (0.98, 3.8, or 20 ng TEQTCDF/kg bw/day) or PeCDF (0.62, 2.2, or 9.5 ng TEQPeCDF/kg bw/day), or a mixture of TCDF and PeCDF (4.1 ng TEQTCDF/kg bw/day and 2.8 ng TEQPeCDF/kg bw/day, respectively) for 180 days. Doses used in this study were approximately eight times greater than those reported in a parallel field study. Activities of the cytochrome P450 1A enzymes, ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) were significantly greater in livers of mink exposed to TCDF, PeCDF, and a mixture of the two congeners; however, there were no significant histological or morphological effects observed. It was determined that EROD and MROD activity can be used as sensitive biomarkers of exposure to PeCDF and TCDF in adult female mink; however, under the conditions of this study, the response of EROD/MROD induction occurred at doses that were less than those required to cause histological or morphological changes

    Estimates of cancer potency of 2,3,7,8-tetrachlorodibenzo(p)dioxin using linear and nonlinear dose-response modeling and toxicokinetics

    No full text
    Linear and nonlinear toxicity criteria were derived for 2,3,7,8-tetrachlorodibenzo(p)dioxin (TCDD) using the recent National Toxicology Program rat cancer bioassay. Dose-response relationships were assessed for combined liver tumors based on lifetime average liver concentrations (LALCs) estimated with a toxicokinetic model. Rat LALC estimates at the 1% point of departure (POD) were obtained with benchmark dose (BMD) modeling to yield the BMD in terms of LALC. The same toxicokinetic model was used to backextrapolate the human-equivalent external dose (HED). A linear cancer slope factor (CSF) with a value of 1 × 10 per pg/kg/day was calculated as the ratio between the benchmark response rate and the HED at the lower confidence limit of the benchmark dose (BMDL). A nonlinear reference dose (RfD) with a value of 100 pg/kg/day was developed from the BMD value by applying uncertainty factors to rat internal and human external doses. The RfD was 100 times higher than the 10 risk-specific dose (RSD) based on the linear CSF. For comparison, BMD and BMDL values were developed for key events in the tumor promotion mode of action (MOA) of TCDD. This MOA involves dysregulation of the normal function of the aryl hydrocarbon receptor and its associated biological processes and results in pathologies that drive tumor promotion and progression. The BMD values for key events were consistent with the timing of the key events within the MOA and provided support for the choices of the 1% tumor rate as a POD and dichotomous Hill model for representing receptor-mediated carcinogenicity. Because a threshold toxicity criterion most accurately reflects the MOA, the RfD for TCDD with a value of 100 pg/kg/day is considered appropriate for regulatory purposes, consistent with a 2006 NRC panel's recommendation to develop a threshold-based cancer potency factor for TCDD and with the methodology in U.S. Environmental Protection Agency's Cancer Guidelines

    Estimates of cancer potency of 2,3,4,7,8-Pentachlorodibenzofuran using both nonlinear and linear approaches

    No full text
    Cancer potency estimates were derived for 2,3,4,7,8-pentachlorodibenzofuran (4-PeCDF) using data collected from the recently published National Toxicology Program bioassay in female Sprague-Dawley rats. By using a toxicokinetic model for 4-PeCDF, the dose-response relationship for combined liver tumors (hepatocellular adenomas and cholangiocarcinomas) in rats was assessed in terms of lifetime average liver concentration and lifetime average adipose concentration with data from both the lifetime and the stop-exposure components of the bioassay. Benchmark dose modeling was performed to estimate tissue concentrations at two points of departure (EC and EC and their 95% upper and lower confidence limits). The same toxicokinetic model with human input values was then used to back-extrapolate human equivalent doses that corresponded to the internal tissue concentration measures at the points of departure. Information regarding the cancer mode of action was used to support the development of several toxicity criterion values based on a nonlinear method, e.g., reference dose or tolerable daily intake. Nonlinear estimates of toxicity criteria based on observed noncancer toxic events as possible precursors to tumor formation were also derived and were similar in value to those based on combined liver tumors. For comparison purposes, linear estimates of cancer potency were also derived

    BPMN 2.0 execution semantics formalized as graph rewrite rules

    No full text
    This paper presents a formalization of a subset of the BPMN 2.0 execution semantics in terms of graph rewrite rules. The formalization is supported by graph rewrite tools and implemented in one of these tools, called GrGen. The benefit of formalizing the execution semantics by means of graph rewrite rules is that there is a strong relation between the execution semantics rules that are informally specified in the BPMN 2.0 standard and their formalization. This makes it easy to validate the formalization. Having a formalized and implemented execution semantics supports simulation, animation and execution of BPMN 2.0 models. In particular this paper explains how to use the formal execution semantics to verify workflow engines and service orchestration and choreography engines that use BPMN 2.0 for modeling the processes that they execute
    corecore