12 research outputs found

    Exploring the impact of design tool usage on design for additive manufacturing processes and outcomes

    No full text
    Improving designers’ ability to identify manufacturing constraints during design can help reduce the time and cost involved in the development of new products. Different design for additive manufacturing (DfAM) tools exist, but the design outcomes produced using such tools are often evaluated without comparison to existing tools. This study addresses the research gap by directly comparing design performance using two design support tools: a worksheet listing DfAM principles and a manufacturability analysis software tool that analyzes compliance with the same principles. In a randomized-controlled study, 49 nonexpert designers completed a design task to improve the manufacturability of a 3D-printed part using either the software tool or the worksheet tool. In this study, design outcome data (creativity and manufacturability) and design process data (task load and time taken) were measured. We identified statistically significant differences in the number of manufacturability violations in the software and worksheet groups and the creativity of the designs with novel build orientations. Results demonstrated limitations associated with lists of principles and highlighted the potential of software in promoting creativity by encouraging the exploration of alternative build orientations. This study provides support for using software to help designers, particularly nonexpert designers who rely on trial and error during design, evaluate the manufacturability of their designs more effectively, thereby promoting concurrent engineering design practices

    Community-driven PPE production using additive manufacturing during the COVID-19 pandemic: Survey and lessons learned

    No full text
    This study presents a detailed analysis of the production efforts for personal protective equipment in makerspaces and informal production spaces (i.e., community-driven efforts) in response to the COVID-19 pandemic in the United States. The focus of this study is on additive manufacturing (also known as 3D printing), which was the dominant manufacturing method employed in these production efforts. Production details from a variety of informal production efforts were systematically analyzed to quantify the scale and efficiency of different efforts. Data for this analysis was primarily drawn from detailed survey data from 74 individuals who participated in these different production efforts, as well as from a systematic review of 145 publicly available news stories. This rich dataset enables a comprehensive summary of the community-driven production efforts, with detailed and quantitative comparisons of different efforts. In this study, factors that influenced production efficiency and success were investigated, including choice of PPE designs, production logistics, and additive manufacturing processes employed by makerspaces and universities. From this investigation, several themes emerged including challenges associated with matching production rates to demand, production methods with vastly different production rates, inefficient production due to slow build times and high scrap rates, and difficulty obtaining necessary feedstocks. Despite these challenges, nearly every maker involved in these production efforts categorized their response as successful. Lessons learned and themes derived from this systematic study of these results are compiled and presented to help inform better practices for future community-driven use of additive manufacturing, especially in response to emergencies.No embargo COVID-19This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore