129 research outputs found
Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease.
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases
Distinct promoter elements mediate the co-operative effect of Brn-3a and p53 on the p21 promoter and their antagonism on the Bax promoter
Although the promoters of both the Bax and p21 genes are activated by p53, they differ in the effect on this activation of the POU family transcription factor Brn-3a. Thus, Brn-3a inhibits activation of the Bax promoter by p53 but enhances the ability of p53 to activate the p21 promoter. We demonstrate that repression of p53-mediated activation of the Bax promoter involves a complex upstream sequence in which two Brn-3a response elements flank the p53 response element. In contrast, a minimal p21 promoter is activated by Brn-3a and such activation cannot be abolished without abolishing basal promoter activity. Moreover, synergistic activation by Brn-3a and p53 continues to be observed when the p53-binding sites in the p21 promoter are substituted by the Bax p53 site or by the region of the Bax promoter essential for Brn-3a-mediated repression, indicating that the p21 core promoter plays a central role in this response. The significance of these effects is discussed in terms of the different responses of the Bax and p21 promoters and the overlapping but distinct roles of Brn-3a and p53 in neuronal growth arrest and apoptosis
POU4F2/Brn-3b transcription factor is associated with survival and drug resistance in human ovarian cancer cells
The development of drug resistance following treatment with chemotherapeutic agents such as cisplatin (cis) and paclitaxel (pax) contributes to high morbidity and mortality in ovarian cancers. However, the molecular mechanisms underlying such changes are not well understood. In this study, we demonstrate that the Brn-3b transcription factor was increased in different ovarian cancer cells including SKOV3 and A2780 following treatment with cis and pax. Furthermore, sustained increases in Brn-3b were associated with survival in drug resistant cells and correlated with elevated HSP27 expression. In contrast, targeting Brn-3b for reduction using short interfering RNA (siRNA) also resulted in attenuated HSP27 expression. Importantly, blocking Brn-3b expression with siRNA in SKOV3 cells was associated with reduced cell numbers at baseline but also increased cell death after further treatment, indicating sensitization of cells. Similar results were obtained in the metastatic IP1 cell line derived from ascites of mice bearing SKOV3 tumours. These findings suggest that increased Brn-3b may confer resistance to chemotherapeutic drugs in ovarian cancer cells by regulating key target genes such as HSP27 and that targeting Brn-3b may provide a novel mechanism for treatment of drug resistant ovarian cancers
POU4F1 (POU class 4 homeobox 1)
Review on POU4F1 (POU class 4 homeobox 1), with data on DNA, on the protein encoded, and where the gene is implicated
Vascular dysfunction caused by loss of Brn-3b/POU4F2 transcription factor in aortic vascular smooth muscle cells is linked to deregulation of calcium signalling pathways
Phenotypic and functional changes in vascular smooth muscle cells (VSMCs) contribute significantly to cardiovascular diseases (CVD) but factors driving early adverse vascular changes are poorly understood. We report on novel and important roles for the Brn-3b/POU4F2 (Brn-3b) transcription factor (TF) in controlling VSMC integrity and function. Brn-3b protein is expressed in mouse aorta with localisation to VSMCs. Male Brn-3b knock-out (KO) aortas displayed extensive remodelling with increased extracellular matrix (ECM) deposition, elastin fibre disruption and small but consistent narrowing/coarctation in the descending aortas. RNA sequencing analysis showed that these effects were linked to deregulation of genes required for calcium (Ca2+) signalling, vascular contractility, sarco-endoplasmic reticulum (S/ER) stress responses and immune function in Brn-3b KO aortas and validation studies confirmed changes in Ca2+ signalling genes linked to increased intracellular Ca2+ and S/ER Ca2+ depletion [e.g. increased, Cacna1d Ca2+ channels; ryanodine receptor 2, (RyR2) and phospholamban (PLN) but reduced ATP2a1, encoding SERCA1 pump] and chaperone proteins, Hspb1, HspA8, DnaJa1 linked to increased S/ER stress, which also contributes to contractile dysfunction. Accordingly, vascular rings from Brn-3b KO aortas displayed attenuated contractility in response to KCl or phenylephrine (PE) while Brn-3b KO-derived VSMC displayed abnormal Ca2+ signalling following ATP stimulation. This data suggests that Brn-3b target genes are necessary to maintain vascular integrity /contractile function and deregulation upon loss of Brn-3b will contribute to contractile dysfunction linked to CVD
Vascular dysfunction caused by loss of Brn-3b/POU4F2 transcription factor in aortic vascular smooth muscle cells is linked to deregulation of calcium signaling pathways
Phenotypic and functional changes in vascular smooth muscle cells (VSMCs) contribute significantly to cardiovascular diseases (CVD) but factors driving early adverse vascular changes are poorly understood. We report on novel and important roles for the Brn-3b/POU4F2 (Brn-3b) transcription factor (TF) in controlling VSMC integrity and function. Brn-3b protein is expressed in mouse aorta with localisation to VSMCs. Male Brn-3b KO aortas displayed extensive remodelling with increased extracellular matrix (ECM) deposition, elastin fiber disruption and aortic coarctation. RNA sequencing analysis showed that these effects were linked to deregulation of genes required for calcium (Ca2+) signaling, vascular contractility, sarco-endoplasmic reticulum (S/ER) stress responses and immune function in Brn-3b KO aortas and validation studies confirmed changes in Ca2+ signalling genes linked to increased intracellular Ca2+ and S/ER Ca2+ depletion [e.g. increased, Cacna1d Ca2+ channels; ryanodine receptor 2, (RyR2) and phospholamban (PLN) but reduced ATP2a1, encoding SERCA1 pump and chaperone proteins, Hspb1, HspA8, DnaJa1 linked to increased S/ER stress, which also contributes to contractile dysfunction. Accordingly, vascular rings from Brn-3b KO aortas displayed attenuated contractility in response to KCl or phenylephrine (PE) while Brn-3b KO-derived VSMC displayed abnormal Ca2+ signalling following ATP stimulation. This data suggests that Brn-3b target genes are necessary to maintain vascular integrity and contractile function and deregulation upon loss of Brn-3b will contribute to contractile dysfunction and CVD
Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart
Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a(-/-) : Brn-3b(-/-)) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts
Differential regulation of different human papilloma virus variants by the POU family transcription factor Brn-3a
The Brn-3a POU family transcription factor is over-expressed in human cervical carcinoma biopsies and is able to activate expression of the human papilloma virus type 16 (HPV-16) upstream regulatory region (URR), which drives the expression of the E6 and E7 oncoproteins. Inhibition of Brn-3a expression in human cervical cancer cells inhibits HPV gene expression and reduces cellular growth and anchorage independence in vitro as well as the ability to form tumours in vivo. Here we show that Brn-3a differentially regulates different HPV-16 variants that have previously been shown to be associated with different risks of progression to cervical carcinoma. In human cervical material Brn-3a levels correlate directly with HPV E6 levels in individuals infected with a high risk variant of HPV-16 whereas this is not the case for a low risk variant. Moreover, the URRs of high and intermediate risk variants are activated by Brn-3a in transfection assays whereas the URR of a low risk variant is not. The change of one or two bases in a low risk variant URR to their equivalent in a higher risk URR can render the URR responsive to Brn-3a and vice versa. These results help explain why the specific interplay between viral and cellular factors necessary for the progression to cervical carcinoma, only occurs in a minority of those infected with HPV-16
- …