25 research outputs found

    Aphid and Plant Volatiles Induce Oviposition in an Aphidophagous Hoverfly

    Get PDF
    Episyrphus balteatus DeGeer (Diptera, Syrphidae) is an abundant and efficient aphid-specific predator. We tested the electroantennographic (EAG) response of this syrphid fly to the common aphid alarm pheromone, (E)-β-farnesene (EβF), and to several plant volatiles, including terpenoids (mono- and sesquiterpenes) and green leaf volatiles (C6 and C9 alcohols and aldehydes). Monoterpenes evoked significant EAG responses, whereas sesquiterpenes were inactive, except for the aphid alarm pheromone (EβF). The most pronounced antennal responses were elicited by six and nine carbon green leaf alcohols and aldehydes [i.e., (Z)-3-hexenol, (E)-2-hexenol, (E)-2-hexenal, and hexanal]. To investigate the behavioral activity of some of these EAG-active compounds, E. balteatus females were exposed to R-(+)-limonene (monoterpene), (Z)-3-hexenol (green leaf alcohol), and EβF (sesquiterpene, common aphid alarm pheromone). A single E. balteatus gravid female was exposed for 10 min to an aphid-free Vicia faba plant that was co-located with a semiochemical dispenser. Without additional semiochemical, hoverfly females were not attracted to this plant, and no oviposition was observed. The monoterpene R-(+)-limonene did not affect the females’ foraging behavior, whereas (Z)-3-hexenol and EβF increased the time of flight and acceptance of the host plant. Moreover, these two chemicals induced oviposition on aphid-free plants, suggesting that selection of the oviposition site by predatory hoverflies relies on the perception of a volatile blend composed of prey pheromone and typical plant green leaf volatiles

    Behavioral and electrophysiological responses of the banana weevil Cosmopolites sordidus to host plant volatiles

    No full text
    Male and female Cosmopolites sordidus were attracted to freshly cut banana rhizome and pseudostem in a still-air olfactometer. Females responded similarly to odors from a comparatively resistant and from a susceptible cultivar of banana, when presented as either freshly cut tissue or as Porapak-trapped volatiles. Females were also attracted to rotting banana pseudostem and to volatiles collected from it. Males and females gave similar responses to host tissue in both the behavioral bioassay and to collected volatiles in EAG recordings. Weevils did not respond, either behaviorally or electrophysiologically, to a synthetic mixture of mono- and sesqiterpenes, which made up over 9% of the volatiles collected from pseudostem

    Discrimination of parasitized aphids by a hoverfly predator: effects on larval performance, foraging, and oviposition behavior

    Full text link
    The choice of oviposition site by female aphidophagous predators is crucial for offspring performance, especially in hoverflies whose newly hatched larvae are unable to move over large distance. Predator and parasitoid interactions within the aphidophagous guild are likely to be very important in influencing the choices made by predatory hoverfly females. In the present study, the foraging and oviposition behavior of the aphidophagous hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae) was investigated with respect to the parasitized state of its aphid prey, Acyrthosiphon pisum Harris (Homoptera: Aphididae), that were parasitized by Aphidius ervi Haliday (Hymenoptera: Aphidiidae). We also recorded the number of eggs laid by hoverfly females when subjected to parasitized aphids. Furthermore, we studied the influence of being fed with parasitized aphids on hoverfly larval performance. Hoverfly females did not exhibit any preference for plants infested with unparasitized or aphids parasitized for 7 days. On the other hand, plants infested with mummies or exuvia were less attractive for E. balteatus. These results were correlated with (i) the number of eggs laid by E. balteatus females and (ii) larval performance. Thus, our results demonstrate that E. balteatus behavior is affected by parasitoid presence through their exploitation of aphid colonies. Indeed, hoverfly predators select their prey according to the developmental state of the parasitoid larvae

    Transgenerational effects and the cost of ant tending in aphids

    Get PDF
    In mutualistic interactions, partners obtain a net benefit, but there may also be costs associated with the provision of benefits for a partner. The question of whether aphids suffer such costs when attended by ants has been raised in previous work. Transgenerational effects, where offspring phenotypes are adjusted based on maternal influences, could be important in the mutualistic interaction between aphids and ants, in particular because aphids have telescoping generations where two offspring generations can be present in a mature aphid. We investigated the immediate and transgenerational influence of ant tending on aphid life history and reproduction by observing the interaction between the facultative myrmecophile Aphis fabae and the ant Lasius niger over 13 aphid generations in the laboratory. We found that the effect of ant tending changes dynamically over successive aphid generations after the start of tending. Initially, total aphid colony weight, aphid adult weight and aphid embryo size decreased compared with untended aphids, consistent with a cost of ant association, but these differences disappeared within four generations of interaction. We conclude that transgenerational effects are important in the aphid–ant interactions and that the costs for aphids of being tended by ants can vary over generations
    corecore