2,418 research outputs found

    DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae

    Get PDF
    The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled

    The Nuclease Activity of the Yeast Dna2 Protein, Which Is Related to the RecB-like Nucleases, Is Essential in Vivo

    Get PDF
    Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype

    Dna2 Helicase/Nuclease Causes Replicative Fork Stalling and Double-strand Breaks in the Ribosomal DNA of Saccharomyces cerevisiae

    Get PDF
    We have proposed that faulty processing of arrested replication forks leads to increases in recombination and chromosome instability in Saccharomyces cerevisiae and contributes to the shortened lifespan of dna2 mutants. Now we use the ribosomal DNA locus, which is a good model for all stages of DNA replication, to test this hypothesis. We show directly that DNA replication pausing at the ribosomal DNA replication fork barrier (RFB) is accompanied by the occurrence of double-strand breaks near the RFB. Both pausing and breakage are elevated in the early aging, hypomorphic dna2-2 helicase mutant. Deletion of FOB1, encoding the fork barrier protein, suppresses the elevated pausing and DSB formation, and represses initiation at rDNA ARSs. The dna2-2 mutation is synthetically lethal with {Delta}rrm3, encoding another DNA helicase involved in rDNA replication. It does not appear to be the case that the rDNA is the only determinant of genome stability during the yeast lifespan however since strains carrying deletion of all chromosomal rDNA but with all rDNA supplied on a plasmid, have decreased rather than increased lifespan. We conclude that the replication-associated defects that we can measure in the rDNA are symbolic of similar events occurring either stochastically throughout the genome or at other regions where replication forks move slowly or stall, such as telomeres, centromeres, or replication slow zones

    Coordination of Nucleases and Helicases during DNA Replication and Double-strand Break Repair

    Get PDF
    Nucleases and helicases are involved in numerous steps in DNA replication and repair. Nucleases act on intermediates in DNA replication created by DNA polymerases (Chapter 4) and helicases (Chapter 3). They can create substrates for repair as in Okazaki fragment processing (OFP) and homologous recombination. They can also create substrates for activation of a checkpoint response, or participate in downregulation of checkpoints. In the special case of telomere replication, they are also involved in essential processing steps (Chapter 8). Nucleases known to act during DNA replication include Dna2, Rad27, Mre11, Sae2, Exo1, RNaseH, Yen1 andMus81/Mms4. Of these, Dna2, Exo1 and Mre11 are of particular interest because they have been identified as crucial activities that initiate repair of double-strand breaks (DSBs) by homologous recombination and thus form an intrinsic link between DNA replication and repair of DSBs derived from replication fork failure. The action of the nucleases is coordinated with those of a number of helicases and is discussed here in the context of a network of their interactions that combine to maintain genome integrity during DNA replication

    Coordination of Nucleases and Helicases during DNA Replication and Double-strand Break Repair

    Get PDF
    Nucleases and helicases are involved in numerous steps in DNA replication and repair. Nucleases act on intermediates in DNA replication created by DNA polymerases (Chapter 4) and helicases (Chapter 3). They can create substrates for repair as in Okazaki fragment processing (OFP) and homologous recombination. They can also create substrates for activation of a checkpoint response, or participate in downregulation of checkpoints. In the special case of telomere replication, they are also involved in essential processing steps (Chapter 8). Nucleases known to act during DNA replication include Dna2, Rad27, Mre11, Sae2, Exo1, RNaseH, Yen1 andMus81/Mms4. Of these, Dna2, Exo1 and Mre11 are of particular interest because they have been identified as crucial activities that initiate repair of double-strand breaks (DSBs) by homologous recombination and thus form an intrinsic link between DNA replication and repair of DSBs derived from replication fork failure. The action of the nucleases is coordinated with those of a number of helicases and is discussed here in the context of a network of their interactions that combine to maintain genome integrity during DNA replication

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint

    Get PDF
    Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27^(scFEN1), encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27^(ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset

    Dna2 Is Involved in CA Strand Resection and Nascent Lagging Strand Completion at Native Yeast Telomeres

    Get PDF
    Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3′-GT-overhangs that extend beyond the complementary 5′-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G_2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5′-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5′-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands
    • …
    corecore