15 research outputs found

    A New Pansharpening Approach for Hyperspectral Images

    Get PDF
    We first briefly review recent papers for pansharpening of hyperspectral (HS) images. We then present a recent pansharpening approach called hybrid color mapping (HCM). A few variants of HCM are then summarized. Using two hyperspectral images, we illustrate the advantages of HCM by comparing HCM with 10 state-of-the-art algorithms

    A New Blind Video Quality Metric for Assessing Different Turbulence Mitigation Algorithms

    No full text
    Although many algorithms have been proposed to mitigate air turbulence in optical videos, there do not seem to be consistent blind video quality assessment metrics that can reliably assess different approaches. Blind video quality assessment metrics are necessary because many videos containing air turbulence do not have ground truth. In this paper, a simple and intuitive blind video quality assessment metric is proposed. This metric can reliably and consistently assess various turbulent mitigation algorithms for optical videos. Experimental results using more than 10 videos in the literature show that the proposed metrics correlate well with human subjective evaluations. Compared with an existing blind video metric and two other blind image quality metrics, the proposed metrics performed consistently better

    Comparing Video Activity Classifiers within a Novel Framework

    No full text
    Video activity classification has many applications. It is challenging because of the diverse characteristics of different events. In this paper, we examined different approaches to event classification within a general framework for video activity detection and classification. In our experiments, we focused on event classification in which we explored a deep learning-based approach, a rule-based approach, and a hybrid combination of the previous two approaches. Experimental results using the well-known Video Image Retrieval and Analysis Tool (VIRAT) database showed that the proposed classification approaches within the framework are promising and more research is needed in this are

    Preflight Contingency Planning Approach for Fixed Wing UAVs with Engine Failure in the Presence of Winds

    No full text
    Preflight contingency planning that utilizes wind forecast in path planning can be highly beneficial to unmanned aerial vehicles (UAV) operators in preventing a possible mishap of the UAV. This especially becomes more important if the UAV has an engine failure resulting in the loss of all its thrust. Wind becomes a significant factor in determining reachability of the emergency landing site in a contingency like this. The preflight contingency plans can guide the UAV operators about how to glide the aircraft to the designated emergency landing site to make a safe landing. The need for a preflight or in-flight contingency plan is even more obvious in the case of a communication loss between the UAV operator and UAV since the UAV will then need to make the forced landing autonomously without the operator. In this paper, we introduce a preflight contingency planning approach that automates the forced landing path generation process for UAVs with engine failure. The contingency path generation aims true reachability to the emergency landing site by including the final approach part of the path in forecast wind conditions. In the contingency path generation, no-fly zones that could be in the area are accounted for and the contingency flight paths do not pass through them. If no plans can be found that fulfill reachability in the presence of no-fly zones, only then, as a last resort, the no-fly zone avoidance rule is relaxed. The contingency path generation utilizes hourly forecast wind data from National Oceanic and Atmospheric Administration for the geographical area of interest and time of the flight. Different from past works, we use trochoidal paths instead of Dubins curves and incorporate wind as a parameter in the contingency path design

    A Super-Resolution and Fusion Approach to Enhancing Hyperspectral Images

    No full text
    High resolution (HR) hyperspectral (HS) images have found widespread applications in terrestrial remote sensing applications, including vegetation monitoring, military surveillance and reconnaissance, fire damage assessment, and many others. They also find applications in planetary missions such as Mars surface characterization. However, resolutions of most HS imagers are limited to tens of meters. Existing resolution enhancement techniques either require additional multispectral (MS) band images or use a panchromatic (pan) band image. The former poses hardware challenges, whereas the latter may have limited performance. In this paper, we present a new resolution enhancement algorithm for HS images that only requires an HR color image and a low resolution (LR) HS image cube. Our approach integrates two newly developed techniques: (1) A hybrid color mapping (HCM) algorithm, and (2) A Plug-and-Play algorithm for single image super-resolution. Comprehensive experiments (objective (five performance metrics), subjective (synthesized fused images in multiple spectral ranges), and pixel clustering) using real HS images and comparative studies with 20 representative algorithms in the literature were conducted to validate and evaluate the proposed method. Results demonstrated that the new algorithm is very promising

    Semi-Automated Emergency Landing Site Selection Approach for UAVs

    No full text

    A Comparison of Compression Codecs for Maritime and Sonar Images in Bandwidth Constrained Applications

    No full text
    Since lossless compression can only achieve two to four times data compression, it may not be efficient to deploy lossless compression in bandwidth constrained applications. Instead, it would be more economical to adopt perceptually lossless compression, which can attain ten times or more compression without loss of important information. Consequently, one can transmit more images over bandwidth limited channels. In this research, we first aimed to compare and select the best compression algorithm in the literature to achieve a compression ratio of 0.1 and 40 dBs or more in terms of a performance metric known as human visual system model (HVSm) for maritime and sonar images. Our second objective was to demonstrate error concealment algorithms that can handle corrupted pixels due to transmission errors in interference-prone communication channels. Using four state-of-the-art codecs, we demonstrated that perceptually lossless compression can be achieved for realistic maritime and sonar images. At the same time, we also selected the best codec for this purpose using four performance metrics. Finally, error concealment was demonstrated to be useful in recovering lost pixels due to transmission errors

    Deep Learning for Land Cover Classification Using Only a Few Bands

    Get PDF
    There is an emerging interest in using hyperspectral data for land cover classification. The motivation behind using hyperspectral data is the notion that increasing the number of narrowband spectral channels would provide richer spectral information and thus help improve the land cover classification performance. Although hyperspectral data with hundreds of channels provide detailed spectral signatures, the curse of dimensionality might lead to degradation in the land cover classification performance. Moreover, in some practical applications, hyperspectral data may not be available due to cost, data storage, or bandwidth issues, and RGB and near infrared (NIR) could be the only image bands available for land cover classification. Light detection and ranging (LiDAR) data is another type of data to assist land cover classification especially if the land covers of interest have different heights. In this paper, we examined the performance of two Convolutional Neural Network (CNN)-based deep learning algorithms for land cover classification using only four bands (RGB+NIR) and five bands (RGB+NIR+LiDAR), where these limited number of image bands were augmented using Extended Multi-attribute Profiles (EMAP). The deep learning algorithms were applied to a well-known dataset used in the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest. With EMAP augmentation, the two deep learning algorithms were observed to achieve better land cover classification performance using only four bands as compared to that using all 144 hyperspectral bands
    corecore