20 research outputs found

    Femtosecond photodissociation dynamics of 1,4-diiodobenzene by gas-phase X-ray scattering and photoelectron spectroscopy

    Get PDF
    We present a multifaceted investigation into the initial photodissociation dynamics of 1,4-diiodobenzene (DIB) following absorption of 267 nm radiation. We combine ultrafast time-resolved photoelectron spectroscopy and X-ray scattering experiments performed at the Linac Coherent Light Source (LCLS) to study the initial electronic excitation and subsequent rotational alignment, and interpret the experiments in light of Complete Active Space Self-Consistent Field (CASSCF) calculations of the excited electronic landscape. The initially excited state is found to be a bound 1B1 surface, which undergoes ultrafast population transfer to a nearby state in 35 ± 10 fs. The internal conversion most likely leads to one or more singlet repulsive surfaces that initiate the dissociation. This initial study is an essential and prerequisite component of a comprehensive study of the complete photodissociation pathway(s) of DIB at 267 nm. Assignment of the initially excited electronic state as a bound state identifies the mechanism as predissociative, and measurement of its lifetime establishes the time between excitation and initiation of dissociation, which is crucial for direct comparison of photoelectron and scattering experiments.</p

    Experimental measurement and modelling of reactive species generation in TiO2 nanoparticle photocatalysis

    No full text
    The generation of reactive species in titanium dioxide (TiO2) nanoparticle photocatalysis was assessed in a laboratory scale setup, in which P25 Aeroxide TiO2 suspensions were photoactivated by means of UV-A radiation. Photogenerated holes and hydroxyl radicals were monitored over time by observing their selective reaction with probe compounds, iodide and terephthalic acid, respectively. TiO2 aggregate size and structure were characterized over the reaction time. Reactive species quenching was then described by a model, accounting for radiative phenomena, TiO2 nanoparticle aggregation and kinetic reactions. The interaction between iodide and photogenerated holes was influenced by iodide adsorption on TiO2 surface, described by a Langmuir–Hinshelwood mechanism, whose parameters were studied as a function of TiO2 concentration and irradiation time. Iodide oxidation was effectively simulated by modelling the reaction volume as a completely stirred two-dimensional domain, in which irradiation phenomena were described by a two-flux model and the steady state for reactive species was assumed. The kinetic parameters for iodide adsorption and oxidation were estimated and successfully validated in a different experimental setup. The same model was adapted to describe the oxidation of terephthalic acid by hydroxyl radicals. The kinetic parameters for terephthalic acid oxidation were estimated and validated, while the issues in investigating the interaction mechanisms among the involved species have been discussed. The sensitivity of operating parameters on model response was assessed and the most relevant parameters were highlighted

    Determination of the complete set of iron normal modes in the heme model compound Fe-III(OEP)C1 from nuclear resonance vibrational spectroscopic data

    No full text
    The vibrational spectrum of Fe-57 in chloro iron octaethylporphyrin, Fe(OEP)Cl, has been calculated by normal-mode analysis refined to absorption data from nuclear resonance vibrational spectroscopy. This technique directly measures the amplitudes and frequencies for all modes that have significant iron participation, providing rigorous constraints to the best-fit values for the force constants. The calculated normal modes reveal the importance of Fe displacements perpendicular to the heme plane for both the lowest frequency modes and the ligand modes. The actual normal modes of Fe(OEP)Cl are not well described by single modes of the core porphyrin; instead they are hybrids of multiple core modes and ethyl and chlorine displacements

    Time-resolved Element-selective Probing of Charge Carriers in Solar Materials

    No full text
    We review our recent results on the implementation of picosecond (ps) X-ray absorption spectroscopy to probe the electronic and geometric structure of centres formed by photoexcitation of solar materials such as TiO2 polymorphs and inorganic Cs-based perovskites. The results show electron localization at Ti defects in TiO2 anatase and rutile and small hole polaron formation in the valence band of CsPbBr3, all within 80 ps. This method is promising for the study of the ultrafast time scales of such processes, especially with the advent of the Swiss X-ray Free Electron Laser (SwissFEL)

    Time-resolved Element-selective Probing of Charge Carriers in Solar Materials

    Get PDF
    We review our recent results on the implementation of picosecond (ps) X-ray absorption spectroscopy to probe the electronic and geometric structure of centres formed by photoexcitation of solar materials such as TiO2 polymorphs and inorganic Cs-based perovskites. The results show electron localization at Ti defects in TiO2 anatase and rutile and small hole polaron formation in the valence band of CsPbBr3, all within 80 ps. This method is promising for the study of the ultrafast time scales of such processes, especially with the advent of the Swiss X-ray Free Electron Laser (SwissFEL)

    Element-selective probing of photo-driven structural changes in all-inorganic lead perovskites

    No full text
    Out-of-equilibrium photo-induced structural changes are probed with element-selectivity in CsPbBr3 perovskite nanoparticles using 100 ps resolution time-resolved X-ray absorption spectroscopy

    Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskite Nanocrystals

    No full text
    The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties
    corecore