16,951 research outputs found

    Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    Get PDF
    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied. The erosion experiments were conducted with a 20-kHz ultrasonic magnetostrictive oscillator in a viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hop-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of those of the fcc materials. Studies with scanning electron microscopy indicated that the cavitation pits were initially formed at the grain boundaries and precipitates and that the pits formed at the junction of grain boundaries grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements showed that the pits that formed over the grain boundaries deepened faster than pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t (sub 0) t 2.5 t (sub 0), where t (sub 0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period

    Cavitation Erosion of Copper, Brass, Aluminum and Titanium Alloys in Mineral Oil

    Get PDF
    The variations of the mean depth of penetration, the mean depth rate of penetration, MDRP, the pit diameter 2a and depth h due to cavitation attack on Al 6061-T6, Cu, brass of composition Cu-35Zn-3Pb and Ti-5A1-2.5Sn are presented. The experiments are conducted in a mineral oil of viscosity 110 CS using a magnetostrictive oscillator of 20 kHz frequency. Based on MDRP on the materials, it is found that Ti-5Al-2.5Sn exhibits cavitation erosion resistance which is two orders of magnitude higher than the other three materials. The values of h/a are the largest for copper and decreased with brass, titanium, and aluminum. Scanning electron microscope studies show that extensive slip and cross slip occurred on the surface prior to pitting and erosion. Twinning is also observed on copper and brass

    Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    Get PDF
    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied using a 20-kHz ultrasonic magnetostrictive oscillator in viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hcp-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of the fcc metals. Scanning electron microscopy indicates that the cavitation pits are initially formed at the grain boundaries and precipitates and that the pits that formed at the triple points grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements show that the pits that formed over the grain boundaries deepended faster than other pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t(0) t 2.5 t(0), where t(0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period

    The mechanism of erosion of metallic materials under cavitation attack

    Get PDF
    The mean depth of penetration rates (MDPRs) of eight polycrystalline metallic materials, Al 6061-T6, Cu, brass, phosphor bronze, Ni, Fe, Mo, and Ti-5Al-2.5Sn exposed to cavitation attack in a viscous mineral oil with a 20 kHz ultrasonic oscillator vibrating at 50 micron amplitude are reported. The titanium alloy followed by molybdenum have large incubation periods and small MDPRs. The incubation periods correlate linearly with the inverse of hardness and the average MDPRs correlate linearly with the inverse of tensile strength of materials. The linear relationships yield better statistical parameters than geometric and exponential relationships. The surface roughness and the ratio of pit depth to pit width (h/a) increase with the duration of cavitation attack. The ratio h/a varies from 0.1 to 0.8 for different materials. Recent investigations (20) using scanning electron microscopy to study deformation and pit formation features are briefly reviewed. Investigations with single crystals indicate that the geometry of pits and erosion are dependent on their orientation

    Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water

    Get PDF
    Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1

    Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite

    Get PDF
    Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts

    Neutron Stars as Type-I Superconductors

    Full text link
    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.Comment: 4 page
    • …
    corecore