6 research outputs found

    Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    Get PDF
    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements

    Intragenomic internal transcribed spacer 2 variation in a genus of parasitoid wasps (Hymenoptera: Braconidae): implications for accurate species delimitation and phylogenetic analysis

    No full text
    A recent DNA barcoding study of Australian microgastrines (Hymenoptera: Braconidae) sought to use next-generation sequencing of the cytochrome c oxidase subunit 1 (COI) barcoding gene region, the wingless (WG) gene and the internal transcribed spacer 2 (ITS2) to delimit molecular species in a highly diverse group of parasitic wasps. Large intragenomic distances between ITS2 variants, often larger than the average interspecific variation, caused difficulties in using ITS2 for species delimitation in both threshold and tree-based approaches, and the gene was not included in the reported results of the previous DNA barcoding study. We here report on the intragenomic, and the intra- and interspecies, variation in ITS2in the microgastrine genus Diolcogasterto further investigate the value of ITS2as a marker for species delimitation and phylogenetics of the Microgastrinae. Distinctive intragenomic variant patterns were found in different species of Diolcogaster, with some species possessing a single major variant, and others possessing many divergent variants. Characterizing intragenomic variation of ITS2is critical as it is a widely used marker in hymenopteran phylogenetics and species delimitation, and large intragenomic distances such as those found in this study may obscure phylogenetic signal.E.P. Fagan-Jeffries, S.J.B. Cooper, T.M. Bradford and A.D. Austi

    Dissecting Qtls For Tolerance to Drought and Salinity

    No full text

    Genomics of tolerance to abiotic stress in the Triticeae

    No full text
    Genomics platforms offer unprecedented opportunities to identify, select and in some cases clone the genes and the quantitative trait loci (QTLs) that govern the tolerance of Triticeae to abiotic stresses and, consequently, grain yield. Transcriptome profiling and the other \u201comics\u201d platforms provide further information to unravel gene functions and validate the role of candidate genes. This review provides a synopsis of the main results on the studies that have investigated the genomics of Triticeae crops under conditions of abiotic constraints. With their rich biodiversity and high functional plasticity in response to environmental stresses, Triticeae crops provide an ideal ground for taking full advantage of the opportunities offered by genomics approaches. Ultimately, the practical impact of the knowledge and materials generated through genomics-based approaches will depend on their integration and exploitation within the extant breeding programs

    Genomics of Tolerance to Abiotic Stress in the Triticeae

    No full text
    corecore