886 research outputs found
The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit
Recent ATLAS data significantly extend the exclusion limits for
supersymmetric particles. We examine the impact of such data on global fits of
the constrained minimal supersymmetric standard model (CMSSM) to indirect and
cosmological data. We calculate the likelihood map of the ATLAS search, taking
into account systematic errors on the signal and on the background. We validate
our calculation against the ATLAS determinaton of 95% confidence level
exclusion contours. A previous CMSSM global fit is then re-weighted by the
likelihood map, which takes a bite at the high probability density region of
the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has
clarified explanation of our handling of signal systematic
Revisiting the Higgs Mass and Dark Matter in the CMSSM
Taking into account the available accelerator and astrophysical constraints,
the mass of the lightest neutral Higgs boson h in the minimal supersymmetric
extension of the Standard Model with universal soft supersymmetry-breaking
masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data
from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a
possibility. Here we study the consequences for the parameters of the CMSSM and
direct dark matter detection if the Higgs hint is confirmed, focusing on the
strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the
relic density of the lightest neutralino chi falls within the range of the
cosmological cold dark matter density allowed by WMAP and other experiments. We
find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would
the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the
stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured,
together with its extension to a funnel where rapid annihilation via
direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more
options would be open. We give parametrizations of WMAP strips with large tan
beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV,
and present predictions for spin-independent elastic dark matter scattering
along these strips. These are generally low for models compatible with m_h =
125 GeV, whereas the XENON100 experiment already excludes some portions of
strips where m_h is smaller.Comment: 24 pages, 9 figure
Bayesian approach and Naturalness in MSSM analyses for the LHC
The start of LHC has motivated an effort to determine the relative
probability of the different regions of the MSSM parameter space, taking into
account the present, theoretical and experimental, wisdom about the model.
Since the present experimental data are not powerful enough to select a small
region of the MSSM parameter space, the choice of a judicious prior probability
for the parameters becomes most relevant. Previous studies have proposed
theoretical priors that incorporate some (conventional) measure of the
fine-tuning, to penalize unnatural possibilities. However, we show that such
penalization arises from the Bayesian analysis itself (with no ad hoc
assumptions), upon the marginalization of the mu-parameter. Furthermore the
resulting effective prior contains precisely the Barbieri-Giudice measure,
which is very satisfactory. On the other hand we carry on a rigorous treatment
of the Yukawa couplings, showing in particular that the usual practice of
taking the Yukawas "as required", approximately corresponds to taking
logarithmically flat priors in the Yukawa couplings. Finally, we use an
efficient set of variables to scan the MSSM parameter space, trading in
particular B by tan beta, giving the effective prior in the new parameters.
Beside the numerical results, we give accurate analytic expressions for the
effective priors in all cases. Whatever experimental information one may use in
the future, it is to be weighted by the Bayesian factors worked out here.Comment: LaTeX, 19 pages, 3 figure
Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology
We study phenomenological implications of the ATLAS and CMS hint of a GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric
dark matter models, and for the phenomenology of the CMSSM. We show that in
scalar dark matter models the vacuum stability bound on Higgs boson mass is
lower than in the standard model and the 125 GeV Higgs boson is consistent with
the models being valid up the GUT or Planck scale. We perform a detailed study
of the full CMSSM parameter space keeping the Higgs boson mass fixed to GeV, and study in detail the freeze-out processes that imply the observed
amount of dark matter. After imposing all phenomenological constraints except
for the muon we show that the CMSSM parameter space is divided
into well separated regions with distinctive but in general heavy sparticle
mass spectra. Imposing the constraint introduces severe tension
between the high SUSY scale and the experimental measurements -- only the
slepton co-annihilation region survives with potentially testable sparticle
masses at the LHC. In the latter case the spin-independent DM-nucleon
scattering cross section is predicted to be below detectable limit at the
XENON100 but might be of measurable magnitude in the general case of light dark
matter with large bino-higgsino mixing and unobservably large scalar masses.Comment: 17 pages, 7 figures. v3: same as published versio
The impact of XENON100 and the LHC on Supersymmetric Dark Matter
The effect of 2010 and 2011 LHC data are discussed in connection to the
potential for the direct detection of supersymmetric dark matter. The impact of
the recent XENON100 results are contrasted to these predictions.Comment: 14 pages, 23 figures, To be published in the Proceedings of the 7th
DSU Conference, Beijing Chin
Challenges of Profile Likelihood Evaluation in Multi-Dimensional SUSY Scans
Statistical inference of the fundamental parameters of supersymmetric
theories is a challenging and active endeavor. Several sophisticated algorithms
have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and
nested sampling techniques are geared towards Bayesian inference, they have
also been used to estimate frequentist confidence intervals based on the
profile likelihood ratio. We investigate the performance and appropriate
configuration of MultiNest, a nested sampling based algorithm, when used for
profile likelihood-based analyses both on toy models and on the parameter space
of the Constrained MSSM. We find that while the standard configuration is
appropriate for an accurate reconstruction of the Bayesian posterior, the
profile likelihood is poorly approximated. We identify a more appropriate
MultiNest configuration for profile likelihood analyses, which gives an
excellent exploration of the profile likelihood (albeit at a larger
computational cost), including the identification of the global maximum
likelihood value. We conclude that with the appropriate configuration MultiNest
is a suitable tool for profile likelihood studies, indicating previous claims
to the contrary are not well founded.Comment: 21 pages, 9 figures, 1 table; minor changes following referee report.
Matches version accepted by JHE
Molecular recognition of DNA base pairs by the formamido/pyrrole and formamido/imidazole pairings in stacked polyamides
Polyamides containing an N-terminal formamido (f) group bind to the minor groove of DNA as staggered, antiparallel dimers in a sequence-specific manner. The formamido group increases the affinity and binding site size, and it promotes the molecules to stack in a staggered fashion thereby pairing itself with either a pyrrole (Py) or an imidazole (Im). There has not been a systematic study on the DNA recognition properties of the f/Py and f/Im terminal pairings. These pairings were analyzed here in the context of f-ImPyPy, f-ImPyIm, f-PyPyPy and f-PyPyIm, which contain the central pairing modes, –ImPy– and –PyPy–. The specificity of these triamides towards symmetrical recognition sites allowed for the f/Py and f/Im terminal pairings to be directly compared by SPR, CD and ΔT(M) experiments. The f/Py pairing, when placed next to the –ImPy– or –PyPy– central pairings, prefers A/T and T/A base pairs to G/C base pairs, suggesting that f/Py has similar DNA recognition specificity to Py/Py. With –ImPy– central pairings, f/Im prefers C/G base pairs (>10 times) to the other Watson–Crick base pairs; therefore, f/Im behaves like the Py/Im pair. However, the f/Im pairing is not selective for the C/G base pair when placed next to the –PyPy– central pairings
Dark Matter in SuperGUT Unification Models
After a brief update on the prospects for dark matter in the constrained
version of the MSSM (CMSSM) and its differences with models based on minimal
supergravity (mSUGRA), I will consider the effects of unifying the
supersymmetry-breaking parameters at a scale above M_{GUT}. One of the
consequences of superGUT unification, is the ability to take vanishing scalar
masses at the unification scale with a neutralino LSP dark matter candidate.
This allows one to resurrect no-scale supergravity as a viable phenomenological
model.Comment: 12 pages, 16 figures, To be published in the Proceedings of the 6th
DSU Conference, Leon, Mexico, ed. D. Delepin
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE
- …