855 research outputs found

    Nonlinear Analysis of Irregular Variables

    Full text link
    The Fourier spectral techniques that are common in Astronomy for analyzing periodic or multi-periodic light-curves lose their usefulness when they are applied to unsteady light-curves. We review some of the novel techniques that have been developed for analyzing irregular stellar light or radial velocity variations, and we describe what useful physical and astronomical information can be gained from their use.Comment: 31 pages, to appear as a chapter in `Nonlinear Stellar Pulsation' in the Astrophysics and Space Science Library (ASSL), Editors: M. Takeuti & D. Sasselo

    Evidence for Low-Dimensional Chaos in Semiregular Variable Stars

    Full text link
    An analysis of the photometric observations of the light curves of the five large amplitude, irregularly pulsating stars R UMi, RS Cyg, V CVn, UX Dra and SX Her is presented. First, multi-periodicity is eliminated for these pulsations, i.e. they are not caused by the excitation of a small number of pulsation modes with constant amplitudes. Next, on the basis of energetics we also eliminate stochasticity as a cause, leaving low dimensional chaos as the only alternative. We then use a global flow reconstruction technique in an attempt to extract quantitative information from the light curves, and to uncover common physical features in this class of irregular variable stars that straddle the RV Tau to the Mira variables. Evidence is presented that the pulsational behavior of R UMi, RS Cyg, V CVn and UX Dra takes place in a 4-dimensional dynamical phase space, suggesting that two vibrational modes are involved in the pulsation. A linear stability analysis of the fixed points of the maps further indicates the existence of a two-mode resonance, similar to the one we had uncovered earlier in R Sct: The irregular pulsations are the result of a continual energy exchange between two strongly nonadiabatic modes, a lower frequency pulsation mode and an overtone that are in a close 2:1 resonance. The evidence is particularly convincing for R UMi, RS Cyg and V CVn, but much weaker for UX Dra. In contrast, the pulsations of SX Her appear to be more complex and may require a 6D space.Comment: 20 pages, 14 figures, accepted in ApJ - paper with clearer figures is available at http://www.phys.ufl.edu/~buchler/publications/u12.ps.gz (1Mb

    Configurable unitary transformations and linear logic gates using quantum memories

    Get PDF
    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favourable scaling with an increasing number of modes where N memories can be configured to implement an arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional CZ gate.Comment: 5 pages, 2 figure

    Storage and Manipulation of Light Using a Raman Gradient Echo Process

    Full text link
    The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol for storage and retrieval of optical quantum information. In this paper, we review the properties of the Λ\Lambda-GEM method that stores information in the ground states of three-level atomic ensembles via Raman coupling. The scheme is versatile in that it can store and re-sequence multiple pulses of light. To date, this scheme has been implemented using warm rubidium gas cells. There are different phenomena that can influence the performance of these atomic systems. We investigate the impact of atomic motion and four-wave mixing and present experiments that show how parasitic four-wave mixing can be mitigated. We also use the memory to demonstrate preservation of pulse shape and the backward retrieval of pulses.Comment: 26 pages, 13 figure

    Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity

    Full text link
    We discuss experimental studies of the interaction between a nanoscopic object and a photonic crystal membrane resonator of quality factor Q=55000. By controlled actuation of a glass fiber tip in the near-field of a photonic crystal, we constructed a complete spatio-spectral map of the resonator mode and its coupling with the fiber-tip. On the one hand, our findings demonstrate that scanning probes can profoundly influence the optical characteristics and the near-field images of photonic devices. On the other hand, we show that the introduction of a nanoscopic object provides a low-loss method for on-command tuning of a photonic crystal resonator frequency. Our results are in a very good agreement with the predictions of a combined numerical/analytical theory.Comment: 9 pages, 4 figure
    • …
    corecore