17 research outputs found

    Multichannel mixture models for time-series analysis and classification of engagement with multiple health services: An application to psychology and physiotherapy utilization patterns after traffic accidents

    Get PDF
    Background: Motor vehicle accidents (MVA) represent a significant burden on health systems globally. Tens of thousands of people are injured in Australia every year and may experience significant disability. Associated economic costs are substantial. There is little literature on the health service utilization patterns of MVA patients. To fill this gap, this study has been designed to investigate temporal patterns of psychology and physiotherapy service utilization following transport-related injuries. Method: De-identified compensation data was provided by the Australian Transport Accident Commission. Utilization of physiotherapy and psychology services was analysed. The datasets contained 788 psychology and 3115 physiotherapy claimants and 22,522 and 118,453 episodes of service utilization, respectively. 582 claimants used both services, and their data were preprocessed to generate multidimensional time series. Time series clustering was applied using a mixture of hidden Markov models to identify the main distinct patterns of service utilization. Combinations of hidden states and clusters were evaluated and optimized using the Bayesian information criterion and interpretability. Cluster membership was further investigated using static covariates and multinomial logistic regression, and classified using high-performing classifiers (extreme gradient boosting machine, random forest and support vector machine) with 5-fold cross-validation. Results: Four clusters of claimants were obtained from the clustering of the time series of service utilization. Service volumes and costs increased progressively from clusters 1 to 4. Membership of cluster 1 was positively associated with nerve damage and negatively associated with severe ABI and spinal injuries. Cluster 3 was positively associated with severe ABI, brain/head injury and psychiatric injury. Cluster 4 was positively associated with internal injuries. The classifiers were capable of classifying cluster membership with moderate to strong performance (AUC: 0.62–0.96). Conclusion: The available time series of post-accident psychology and physiotherapy service utilization were coalesced into four clusters that were clearly distinct in terms of patterns of utilization. In addition, pre-treatment covariates allowed prediction of a claimant’s post-accident service utilization with reasonable accuracy. Such results can be useful for a range of decision-making processes, including the design of interventions aimed at improving claimant care and recovery

    Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms

    Get PDF
    Background: Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurological symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorithms may be used to effectively predict these outcomes. The aims of this study were to (1) investigate preoperative clinical risk factors, and (2) build machine learning models to predict adverse outcomes. Methods: This multicenter registry collected clinical and demographic characteristics of patients undergoing DBS surgery (n=501) and tabulated occurrence of complications. Logistic regression was used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 30%, respectively, of both oversampled and original registry data. Performance was evaluated using area under the receiver operating characteristics curve (AUC), sensitivity, specificity and accuracy. Results: Logistic regression showed that the risk of complication was related to the operating institution in which the surgery was performed (OR=0.44, confidence interval [CI]=0.25-0.78), BMI (OR=0.94,CI=0.89-0.99) and diabetes (OR=2.33,CI=1.18-4.60). Patients with diabetes were almost three times more likely to return to the operating room (OR=2.78,CI=1.31-5.88). Patients with a history of smoking were four times more likely to experience postoperative infection (OR=4.20,CI=1.21-14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting any complication (AUC=0.86), a complication within 12 months (AUC=0.91), return to the operating room (AUC=0.88) and infection (AUC=0.97). Age, BMI, procedure side, gender and a diagnosis of Parkinson’s disease were influential features. Conclusions: Multiple significant complication risk factors were identified and supervised learning algorithms effectively predicted adverse outcomes in DBS surgery

    Clinical outcomes associated with robotic and computer-navigated total knee arthroplasty: a machine learning-augmented systematic review

    No full text
    Background Robotic (RTKA) and computer-navigated total knee arthroplasty (CNTKA) are increasingly replacing manual techniques in orthopaedic surgery. This systematic review compared clinical outcomes associated with RTKA and CNTKA and investigated the utility of natural language processing (NLP) for the literature synthesis. Methods A comprehensive search strategy was implemented. Results of included studies were combined and analysed. A transfer learning approach was applied to train deep NLP classifiers (BERT, RoBERTa and XLNet), with cross-validation, to partially automate the systematic review process. Results 52 studies were included, comprising 5,067 RTKA and 2,108 CNTKA. Complication rates were 0–22% and 0–16% and surgical time was 70–116 and 77–102 min for RTKA and CNTKA, respectively. Technical failures were more commonly associated with RTKA (8%) than CNTKA (2–4%). Patient satisfaction was equivalent (94%). RTKA was associated with a higher likelihood of achieving target alignment, less femoral notching, shorter operative time and shorter length of stay. NLP models demonstrated moderate performance (AUC = 0.65–0.68). Conclusions RTKA and CNTKA appear to be associated with similarly positive clinical outcomes. Further work is required to determine whether the two techniques differ significantly with regard to specific outcome measures. NLP shows promise for facilitating the systematic review process

    Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review

    No full text
    Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine. ©2021 Elsevier Ltd. All rights reserved

    Predictors of improvement in quality of life at 12-month follow-up in patients undergoing anterior endoscopic skull base surgery

    No full text
    Background: Patients with pituitary lesions experience decrements in quality of life (QoL) and treatment aims to arrest or improve QoL decline. Objective: To detect associations with QoL in trans-nasal endoscopic skull base surgery patients and train supervised learning classifiers to predict QoL improvement at 12 months. Methods: A supervised learning analysis of a prospective multi-institutional dataset (451 patients) was conducted. QoL was measured using the anterior skull base surgery questionnaire (ASBS). Factors associated with QoL at baseline and at 12-month follow-up were identified using multivariate logistic regression. Multiple supervised learning models were trained to predict postoperative QoL improvement with five-fold cross-validation. Results: ASBS at 12-month follow-up was significantly higher (132.19,SD = 24.87) than preoperative ASBS (121.87,SD = 25.72,p\u3c0.05). High preoperative scores were significantly associated with institution, diabetes and lesions at the planum sphenoidale / tuberculum sella site. Patients with diabetes were five times less likely to report high preoperative QoL. Low preoperative QoL was significantly associated with female gender, a vision related presentation, diabetes, secreting adenoma and the cavernous sinus site. Top quartile change in postoperative QoL at 12-month follow-up was negatively associated with baseline hypercholesterolemia, acromegaly and intraoperative CSF leak. Positive associations were detected for lesions at the sphenoid sinus site and deficient preoperative endocrine function. AdaBoost, logistic regression and neural network classifiers yielded the strongest predictive performance. Conclusion: It was possible to predict postoperative positive change in QoL at 12-month follow-up using perioperative data. Further development and implementation of these models may facilitate improvements in informed consent, treatment decision-making and patient QoL

    Chest radiographs and machine learning: Past, present and future

    No full text
    Despite its simple acquisition technique, the chest X-ray remains the most common first-line imaging tool for chest assessment globally. Recent evidence for image analysis using modern machine learning points to possible improvements in both the efficiency and the accuracy of chest X-ray interpretation. While promising, these machine learning algorithms have not provided comprehensive assessment of findings in an image and do not account for clinical history or other relevant clinical information. However, the rapid evolution in technology and evidence base for its use suggests that the next generation of comprehensive, well-tested machine learning algorithms will be a revolution akin to early advances in X-ray technology. Current use cases, strengths, limitations and applications of chest X-ray machine learning systems are discussed

    Analysis of line and tube detection performance of a chest x-ray deep learning model to evaluate hidden stratification

    No full text
    This retrospective case-control study evaluated the diagnostic performance of a commercially available chest radiography deep convolutional neural network (DCNN) in identifying the presence and position of central venous catheters, enteric tubes, and endotracheal tubes, in addition to a subgroup analysis of different types of lines/tubes. A held-out test dataset of 2568 studies was sourced from community radiology clinics and hospitals in Australia and the USA, and was then ground-truth labelled for the presence, position, and type of line or tube from the consensus of a thoracic specialist radiologist and an intensive care clinician. DCNN model performance for identifying and assessing the positioning of central venous catheters, enteric tubes, and endotracheal tubes over the entire dataset, as well as within each subgroup, was evaluated. The area under the receiver operating characteristic curve (AUC) was assessed. The DCNN algorithm displayed high performance in detecting the presence of lines and tubes in the test dataset with AUCs \u3e 0.99, and good position classification performance over a subpopulation of ground truth positive cases with AUCs of 0.86–0.91. The subgroup analysis showed that model performance was robust across the various subtypes of lines or tubes, although position classification performance of peripherally inserted central catheters was relatively lower. Our findings indicated that the DCNN algorithm performed well in the detection and position classification of lines and tubes, supporting its use as an assistant for clinicians. Further work is required to evaluate performance in rarer scenarios, as well as in less common subgroups
    corecore