437 research outputs found
Avalanche statistics of sand heaps
Large scale computer simulations are presented to investigate the avalanche
statistics of sand piles using molecular dynamics. We could show that different
methods of measurement lead to contradicting conclusions, presumably due to
avalanches not reaching the end of the experimental table.Comment: 6 pages, 4 figure
Exact microscopic analysis of a thermal Brownian motor
We study a genuine Brownian motor by hard disk molecular dynamics and
calculate analytically its properties, including its drift speed and thermal
conductivity, from microscopic theory.Comment: 4 pages, 5 figure
Hands-On TAROT: Intercontinental use of the TAROT for Education and Public Outreach
The TAROT telescope has for primary goal the search for the prompt optical
counterpart of Cosmic Gamma-Ray Bursts. It is a completely autonomous 25cm
telescope installed near Nice (France), able to point any location of the sky
within 1-2 seconds. The control, scheduling, and data processing activities are
completely automated, so the instrument is completely autonomous. In addition
to its un-manned modes, we added recently the possibility to remotely control
the telescope, as a request of the "Hands-On Universe" (HOU) program for
exchange of time within automatic telescopes for the education and public
outreach. To this purpose we developed a simple control interface. A webcam was
installed to visualize the telescope. Access to the data is possible through a
web interface. The images can be processed by the HOU software, a program
specially suited for use within the classroom. We experienced these feature
during the open days of the University of California Berkeley and the Astronomy
Festival of Fleurance (France). We plan a regular use for an astronomy course
of the Museum of Tokyo, as well as for French schools. Not only does Hands-On
TAROT gives the general public an access to professional astronomy, but it is
also a more general tool to demonstrate the use of a complex automated system,
the techniques of data processing and automation. Last but not least, through
the use of telescopes located in many countries over the globe, a form of
powerful and genuine cooperation between teachers and children from various
countries is promoted, with a clear educational goal.Comment: 4 pages, Based on a demonstration presented at the ADASS X
Conference, Boston, MA, USA, October 2000, to appear in ASP Conf. Serie
The Effect of Surfaces on the Tunneling Density of States of an Anisotropically Paired Superconductor
We present calculations of the tunneling density of states in an
anisotropically paired superconductor for two different sample geometries: a
semi-infinite system with a single specular wall, and a slab of finite
thickness and infinite lateral extent. In both cases we are interested in the
effects of surface pair breaking on the tunneling spectrum. We take the stable
bulk phase to be of symmetry. Our calculations are performed
within two different band structure environments: an isotropic cylindrical
Fermi surface with a bulk order parameter of the form ,
and a nontrivial tight-binding Fermi surface with the order parameter structure
coming from an anti-ferromagnetic spin-fluctuation model. In each case we find
additional structures in the energy spectrum coming from the surface layer.
These structures are sensitive to the orientation of the surface with respect
to the crystal lattice, and have their origins in the detailed form of the
momentum and spatial dependence of the order parameter. By means of tunneling
spectroscopy, one can obtain information on both the anisotropy of the energy
gap, |\Delta(\p)|, as well as on the phase of the order parameter,
\Delta(\p) = |\Delta(\p)|e^{i\varphi(\p)}.Comment: 14 pages of revtex text with 11 compressed and encoded figures. To
appear in J. Low Temp. Phys., December, 199
Low-energy quasiparticle states near extended scatterers in d-wave superconductors and their connection with SUSY quantum mechanics
Low-energy quasiparticle states, arising from scattering by single-particle
potentials in d-wave superconductors, are addressed. Via a natural extension of
the Andreev approximation, the idea that sign-variations in the superconducting
pair-potential lead to such states is extended beyond its original setting of
boundary scattering to the broader context of scattering by general
single-particle potentials, such as those due to impurities. The
index-theoretic origin of these states is exhibited via a simple connection
with Witten's supersymmetric quantum-mechanical model.Comment: 5 page
Thermodynamic properties of thin films of superfluid 3He-A
The pairing correlations in superfluid He-3 are strongly modified by
quasiparticle scattering off a surface or an interface. We present theoretical
results and predictions for the order parameter, the quasiparticle excitation
spectrum and the free energy for thin films of superfluid He-3. Both specular
and diffuse scattering by a substrate are considered, while the free surface is
assumed to be a perfectly reflecting specular boundary. The results are based
on self-consistent calculations of the order parameter and quasiparticle
excitation spectrum at zero pressure. We obtain new results for the phase
diagram, free energy, entropy and specific heat of thin films of superfluid
He-3.Comment: Replaced with an updated versio
Tunneling into Current-Carrying Surface States of High T Superconductors
Theoretical results for the ab-plane tunneling conductance in the d-wave
model for high Tc superconductors are presented. The d-wave model predicts
surface bound states below the maximum gap. A sub-dominant order parameter,
stabilized by the surface, leads to a splitting of the zero-bias conductance
peak (ZBCP) in zero external field and to spontaneous surface currents. In a
magnetic field screening currents shift the quasiparticle bound state spectrum
and lead to a voltage splitting of the ZBCP that is linear in H at low fields,
and saturates at a pairbreaking critical field of order 3 Tesla. Comparisons
with recent experimental results on Cu/YBCO junctions are presented.Comment: 4 pages in a RevTex (3.0) file plus 3 Figures in PostScript. To
appear in Phys. Rev. Let
Subharmonic gap structure in d-wave superconductors
We present a self-consistent theory of current-voltage characteristics of
d-wave/d-wave contacts at arbitrary transparency. In particular, we address the
open problem of the observation of subharmonic gap structure (SGS) in cuprate
junctions. Our analysis shows that: (i) the SGS is possible in d-wave
superconductors, (ii) the existence of bound states within the gap results in
an even-odd effect in the SGS, (iii) elastic scattering mechanisms, like
impurities or surface roughness, may suppress the SGS, and (iv) in the presence
of a magnetic field the Doppler shift of the Andreev bound states leads to a
very peculiar splitting of the SGS, which is an unambiguous fingerprint of
d-wave superconductivity.Comment: Revtex4, 4 pages, 5 figure
Quasiparticle Bound States and Low-Temperature Peaks of the Conductance of NIS Junctions in d-Wave Superconductors
Quasiparticle states bound to the boundary of anisotropically paired
superconductors, their contributions to the density of states and to the
conductance of NIS junctions are studied both analytically and numerically. For
smooth surfaces and real order parameter we find some general results for the
bound state energies. In particular, we show that under fairly general
conditions quasiparticle states with nonzero energies exist for momentum
directions within a narrow region around the surface normal. The energy
dispersion of the bound states always has an extremum for the direction along
the normal. Along with the zero-bias anomaly due to midgap states, we find, for
quasi two-dimensional materials, additional low-temperature peaks in the
conductance of NIS junctions for voltages determined by the extrema of the
bound state energies. The influence of interface roughness on the conductance
is investigated within the framework of Ovchinnikov's model. We show that
nonzero-bias peaks at low temperatures may give information on the order
parameter in the bulk, even though it is suppressed at the surface.Comment: 14 pages, PostScrip
Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity
We establish universal behavior in temperature dependencies of some
observables in -wave BCS superconductivity in the presence of a weak
wave. There also could appear a second second-order phase transition. As
temperature is lowered past the usual critical temperature , a less
ordered superconducting phase is created in wave, which changes to a more
ordered phase in wave at (). The presence of two phase
transitions manifest in two jumps in specific heat at and . The
temperature dependencies of susceptibility, penetration depth, and thermal
conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures
- …