235 research outputs found

    Does an Analysis of the Pulsatile Secretion Pattern of Adrenocorticotropin and Cortisol Predict the Result of Transsphenoidal Surgery in Cushing’s Disease.

    Get PDF
    The endocrinological, surgical, and histological findings of patients with ACTH-dependent Cushing's disease were correlated with the pulsatile secretion pattern of ACTH and cortisol and the outcome after transsphenoidal pituitary surgery. A total of 28 patients were studied. The preoperative pulsatile secretion of ACTH and cortisol was assessed by sampling blood at 20-min intervals over 24 h. The pulsatile pattern of secretion was analyzed by the Cluster program. In 21 patients, an ACTH-secreting pituitary adenoma was identified and resected. Of these patients, 18 underwent clinical remission, and their cortisol secretion was suppressed to a normal level by low dose dexamethasone. Histological examinations in the patients with persistent disease revealed normal pituitary in 6 cases, nodular hyperplasia in 1, and ACTH-secreting pituitary adenoma in 3 cases. Analysis of the pulsatile pattern of ACTH and cortisol secretion did not reveal significant differences in timing, frequency, and/or amplitude of ACTH and cortisol pulses in normalized patients and those with persistent disease after surgery. It is concluded that analysis of the secretory pattern is not a suitable method for predicting the outcome of ranssphenoidal surgery in patients with ACTH-dependent Cushing's disease

    Pre- and postoperative headache in patients with meningioma

    Get PDF
    Background Meningiomas are generally slowly growing intracranial tumors. They are often incidentally diagnosed, given that symptoms may be absent even in cases of an enormous tumor size. Headache is a frequent but not consistent symptom. Therefore, we examined the association between structural, biochemical and histochemical tumor parameters with preoperative as well as postoperative occurrence of headache. Methods In our study, we prospectively investigated 69 consecutive patients enrolled for meningioma neurosurgery. Anatomical, histological and biochemical parameters were acquired, and headache parameters were registered from the clinical report and from a questionnaire filled by the patients before neurosurgery. The headache was re-evaluated one year after neurosurgery. The study was designed to exploratively investigate whether there is an association of acquired clinical and biological parameters with the occurrence of preoperative and postoperative headache. Results Edema diameter and the proliferation marker MIB-1 were negatively associated with the incidence and intensity of preoperative headache, while the content of prostaglandin E2 in the tumor tissue was positively associated with preoperative headache intensity. Headache was more prevalent when the meningioma was located in the area supplied by the ophthalmic trigeminal branch. Compared to preoperative headache levels, an overall reduction was observed one year postoperative, and patients with a larger tumor had a higher headache remission. In parietal and occipital meningiomas and in those with a larger edema, the percentage of the headache remission rate was higher compared to other locations or smaller edema. Multivariable analyses showed an involvement of substance P and prostaglandin E2 in preoperative headache. Conclusions The study demonstrates new associations between meningiomas and headache. The postoperative headache outcome in the presented patient sample is encouraging for the performed neurosurgical intervention. These results should be tested in a prospective study that incorporates all patients with meningiomas

    The Passage of S100B from Brain to Blood Is Not Specifically Related to the Blood-Brain Barrier Integrity

    Get PDF
    Following brain injury, S100B is released from damaged astrocytes but also yields repair mechanisms. We measured S100B in the cerebrospinal fluid (CSF) and serum (Cobas e411 electrochemiluminescence assay, Roche) longitudinally in a large cohort of patients treated with a ventricular drainage following traumatic brain injury (TBI) or subarachnoid hemorrhage (SAH). Statistical analysis was performed with SPSS software applying the Mann-Whitney rank sum test or chi-test where appropriate. S100B in CSF and serum was significantly increased following TBI (n = 71) and SAH (n = 185) for at least one week following injury. High S100B levels in CSF and serum were inconsistent associated with outcome. The passage of S100B from CSF to blood (100∗serumS100B/CSFS100B) was significantly decreased although the albumin quotient suggested an “open” blood-CSF barrier. Events possibly interfering with the BBB did not affect the S100B passage (P = .591). In conclusion, we could not confirm S100B measurements to reliably predict outcome, and a compromised blood-CSF barrier did not affect the passage of S100B from CSF to serum

    Brain Miffed by Macrophage Migration Inhibitory Factor

    Get PDF
    Macrophage migration inhibitory factor (MIF) is a cytokine which also exhibits enzymatic properties like oxidoreductase and tautomerase. MIF plays a pivotal role in innate and acquired immunity as well as in the neuroendocrine axis. Since it is involved in the pathogenesis of acute and chronic inflammation, neoangiogenesis, and cancer, MIF and its signaling components are considered suitable targets for therapeutic intervention in several fields of medicine. In neurodegenerative and neurooncological diseases, MIF is a highly relevant, but still a hardly investigated mediator. MIF operates via intracellular protein-protein interaction as well as in CD74/CXCR2/CXCR4 receptor-mediated pathways to regulate essential cellular systems such as redox balance, HIF-1, and p53-mediated senescence and apoptosis as well as multiple signaling pathways. Acting as an endogenous glucocorticoid antagonist, MIF thus represents a relevant resistance gene in brain tumor therapies. Alongside this dual action, a functional homolog-annotated D-dopachrome tautomerase/MIF-2 has been uncovered utilizing the same cell surface receptor signaling cascade as MIF. Here we review MIF actions with respect to redox regulation in apoptosis and in tumor growth as well as its extracellular function with a focus on its potential role in brain diseases. We consider the possibility of MIF targeting in neurodegenerative processes and brain tumors by novel MIF-neutralizing approaches

    Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription

    Get PDF
    Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted

    Treatment of posttraumatic syringomyelia: evidence from a systematic review.

    Get PDF
    Following spinal cord injury (SCI), the routine use of magnetic resonance imaging (MRI) resulted in an incremental diagnosis of posttraumatic syringomyelia (PTS). However, facing four decades of preferred surgical treatment of PTS, no clear consensus on the recommended treatment exists. We review the literature on PTS regarding therapeutic strategies, outcomes, and complications. We performed a systematic bibliographic search on ("spinal cord injuries" [Mesh] AND "syringomyelia" [Mesh]). English language literature published between 1980 and 2020 was gathered, and case reports and articles examining syrinx due to other causes were excluded. The type of study, interval injury to symptoms, severity and level of injury, therapeutic procedure, duration of follow-up, complications, and outcome were recorded. Forty-three observational studies including 1803 individuals met the eligibility criteria. The time interval from SCI to the diagnosis of PTS varied between 42 and 264 months. Eighty-nine percent of patients were treated surgically (n = 1605) with a complication rate of 26%. Symptoms improved in 43% of patients postoperatively and in 2% treated conservatively. Stable disease was documented in 50% of patients postoperatively and in 88% treated conservatively. The percentage of deterioration was similar (surgery 16%, 0.8% dead; conservative 10%). Detailed analysis of surgical outcome with regard to symptoms revealed that pain, motor, and sensory function could be improved in 43 to 55% of patients while motor function deteriorated in around 25%. The preferred methods of surgery were arachnoid lysis (48%) and syrinx drainage (31%). Even diagnosing PTS early in its evolution with MRI, to date, no satisfactory standard treatment exists, and the present literature review shows similar outcomes, regardless of the treatment modality. Therefore, PTS remains a neurosurgical challenge. Additional research is required using appropriate study designs for improving treatment options

    Leptin and Associated Mediators of Immunometabolic Signaling: Novel Molecular Outcome Measures for Neurostimulation to Treat Chronic Pain

    Get PDF
    Chronic pain is a devastating condition affecting the physical, psychological, and socioeconomic status of the patient. Inflammation and immunometabolism play roles in the pathophysiology of chronic pain disorders. Electrical neuromodulation approaches have shown a meaningful success in otherwise drug-resistant chronic pain conditions, including failed back surgery, neuropathic pain, and migraine. A literature review (PubMed, MEDLINE/OVID, SCOPUS, and manual searches of the bibliographies of known primary and review articles) was performed using the following search terms: chronic pain disorders, systemic inflammation, immunometabolism, prediction, biomarkers, metabolic disorders, and neuromodulation for chronic pain. Experimental studies indicate a relationship between the development and maintenance of chronic pain conditions and a deteriorated immunometabolic state mediated by circulating cytokines, chemokines, and cellular components. A few uncontrolled in-human studies found increased levels of pro-inflammatory cytokines known to drive metabolic disorders in chronic pain patients undergoing neurostimulation therapies. In this narrative review, we summarize the current knowledge and possible relationships of available neurostimulation therapies for chronic pain with mediators of central and peripheral neuroinflammation and immunometabolism on a molecular level. However, to address the needs for predictive factors and biomarkers, large-scale databank driven clinical trials are needed to determine the clinical value of molecular profiling
    corecore