2 research outputs found
Relativistic cosmological perturbation scheme on a general background: scalar perturbations for irrotational dust
In standard perturbation approaches and N-body simulations, inhomogeneities
are described to evolve on a predefined background cosmology, commonly taken as
the homogeneous-isotropic solutions of Einstein's field equations
(Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmologies). In order to make
physical sense, this background cosmology must provide a reasonable description
of the effective, i.e. spatially averaged, evolution of structure
inhomogeneities also in the nonlinear regime. Guided by the insights that (i)
the average over an inhomogeneous distribution of matter and geometry is in
general not given by a homogeneous solution of general relativity, and that
(ii) the class of FLRW cosmologies is not only locally but also globally
gravitationally unstable in relevant cases, we here develop a perturbation
approach that describes the evolution of inhomogeneities on a general
background being defined by the spatially averaged evolution equations. This
physical background interacts with the formation of structures. We derive and
discuss the resulting perturbation scheme for the matter model `irrotational
dust' in the Lagrangian picture, restricting our attention to scalar
perturbations.Comment: 18 pages. Matches published version in CQ
Lagrangian theory of structure formation in relativistic cosmology I: Lagrangian framework and definition of a nonperturbative approximation
In this first paper we present a Lagrangian framework for the description of
structure formation in general relativity, restricting attention to
irrotational dust matter. As an application we present a self-contained
derivation of a general-relativistic analogue of Zel'dovich's approximation for
the description of structure formation in cosmology, and compare it with
previous suggestions in the literature. This approximation is then
investigated: paraphrasing the derivation in the Newtonian framework we provide
general-relativistic analogues of the basic system of equations for a single
dynamical field variable and recall the first-order perturbation solution of
these equations. We then define a general-relativistic analogue of Zel'dovich's
approximation and investigate its implications by functionally evaluating
relevant variables, and we address the singularity problem. We so obtain a
possibly powerful model that, although constructed through extrapolation of a
perturbative solution, can be used to put into practice nonperturbatively, e.g.
problems of structure formation, backreaction problems, nonlinear properties of
gravitational radiation, and light-propagation in realistic inhomogeneous
universe models. With this model we also provide the key-building blocks for
initializing a fully relativistic numerical simulation.Comment: 21 pages, content matches published version in PRD, discussion on
singularities added, some formulas added, some rewritten and some correcte