3,730 research outputs found

    The physical nature of interplanetary dust as inferred by particles collected at 35 km

    Get PDF
    Particles were collected at an altitude of 35 km by two flights of a volume sampling micrometeorite collector. The collection scheme is very sensitive and is capable of collecting a significant number of particles. Many of the particles collected have chemical compositions similar to solar or to iron meteorites. Morphology of collected particles indicates that both true micrometeorites and ablation products were collected

    Low temperature specific heat of the heavy fermion superconductor PrOs4_4Sb12_{12}

    Full text link
    We report the magnetic field dependence of the low temperature specific heat of single crystals of the first Pr-based heavy fermion superconductor PrOs4_4Sb12_{12}. The low temperature specific heat and the magnetic phase diagram inferred from specific heat, resistivity and magnetisation provide compelling evidence of a doublet ground state and hence superconductivity mediated by quadrupolar fluctuations. This establishes PrOs4_4Sb12_{12} as a very strong contender of superconductive pairing that is neither electron-phonon nor magnetically mediated.Comment: 4 pages, 4 figure

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Non-Fermi Liquid Behavior in Dilute Quadrupolar System Prx_{x}La1x_{1-x}Pb3_3 with xx\le0.05

    Full text link
    We have studied the low-temperature properties of Prx_{x}La1x_{1-x}Pb3_{3} with non-Kramers Γ3\Gamma_{3} quadrupolar moments of the crystal-electric-field ground state, for a wide concentration range of Pr ions. For xx\le0.05, the specific heat C/TC/T increases monotonically below TT=1.5 K, which can be scaled with a characteristic temperature TT^{*} defined at each concentration xx. The electrical resistivity ρ\rho(T)(T) in the corresponding temperature region shows a marked decrease deviating from a Fermi-liquid behavior ρ\rho(T)(T)\proptoT2T^{2}. The Kondo effect arising from the correlation between the dilute Γ3\Gamma_{3} moments and the conduction electrons may give rise to such anomalous behavior

    SO(10) Cosmic Strings and SU(3) Color Cheshire Charge

    Full text link
    Certain cosmic strings that occur in GUT models such as SO(10)SO(10) can carry a magnetic flux which acts nontrivially on objects carrying SU(3)colorSU(3)_{color} quantum numbers. We show that such strings are non-Abelian Alice strings carrying nonlocalizable colored ``Cheshire" charge. We examine claims made in the literature that SO(10)SO(10) strings can have a long-range, topological Aharonov-Bohm interaction that turns quarks into leptons, and observe that such a process is impossible. We also discuss flux-flux scattering using a multi-sheeted formalism.Comment: 37 Pages, 8 Figures (available upon request) phyzzx, iassns-hep-93-6, itp-sb-93-6

    Preheating in an Expanding Universe: Analytic Results for the Massless Case

    Get PDF
    Analytic results are presented for preheating in both flat and open models of chaotic inflation, for the case of massless inflaton decay into further inflaton quanta. It is demonstrated that preheating in both these cases closely resembles that in Minkowski spacetime. Furthermore, quantitative differences between preheating in spatially-flat and open models of inflation remain of order 10210^{-2} for the chaotic inflation initial conditions considered here.Comment: 15pp, revtex. No figures. Very minor revisions; forthcoming in Phys Rev

    Upper Limit on the molecular resonance strengths in the 12{}^{12}C+12{}^{12}C fusion reaction

    Full text link
    Carbon burning is a crucial process for a number of important astrophysical scenarios. The lowest measured energy is around Ec.m._{\rm c.m.}=2.1 MeV, only partially overlapping with the energy range of astrophysical interest. The currently adopted reaction rates are based on an extrapolation which is highly uncertain because of potential resonances existing in the unmeasured energy range and the complication of the effective nuclear potential. By comparing the cross sections of the three carbon isotope fusion reactions, 12{}^{12}C+12{}^{12}C, 12{}^{12}C+13{}^{13}C and 13{}^{13}C+13{}^{13}C, we have established an upper limit on the molecular resonance strengths in 12{}^{12}C+12{}^{12}C fusion reaction. The preliminary results are presented and the impact on nuclear astrophysics is discussed.Comment: 4 pages, 3 figures, FUSION11 conference proceedin
    corecore