5 research outputs found

    MAPK phosphatase-1 represents a novel antiinflammatory target of glucocorticoids in the human endothelium

    Get PDF
    Glucocorticoids are well-established anti- inflammatory drugs thought to mainly act by inhibition of proinflammatory transcription factors like NF-κB. In recent years, however, transcription factorindependent mechanisms of glucocorticoid action have been proposed, namely the influence on MAPK pathways. Here we identify MAPK phosphatase-1 (MKP-1) as a pivotal mediator of the anti-inflammatory action of glucocorticoids in the human endothelium. We applied dexamethasone (Dex) to TNF-α-activated human endothelial cells and used the adhesion molecule E-selectin as inflammatory read-out parameter. Dex is known to reduce the expression of E-selectin, which is largely regulated by NF-κB. Here, we communicate that Dex at low concentrations (1–100 nM) markedly attenuates E-selectin expression without affecting NF-κB. Importantly, Dex is able to increase the expression of MKP-1, which causes an inactivation of TNF-α-induced p38 MAPK and mediates inhibition of E-selectin expression. In endothelial MKP-1ˉ/ˉ cells differentiated from MKP-1ˉ/ˉ embryonic stem cells and in MKP-1-silenced human endothelial cells, Dex did not inhibit TNF-α-evoked E-selectin expression. Thus, our findings introduce MKP-1 as a novel and crucial mediator of the anti-inflammatory action of glucocorticoids at low concentrations in the human endothelium and highlight MKP-1 as an important and promising antiinflammatory drug target

    Atrial Natriuretic Peptide Protects against Histamine-Induced Endothelial Barrier Dysfunction in Vivo

    Get PDF
    Endothelial barrier dysfunction is a hallmark of many severe pathologies, including sepsis or atherosclerosis. The cardiovascular hormone atrial natriuretic peptide (ANP) has increasingly been suggested to counteract endothelial leakage. Surprisingly, the precise in vivo relevance of these observations has never been evaluated. Thus, we aimed to clarify this issue and, moreover, to identify the permeability-controlling subcellular systems that are targeted by ANP. Histamine was used as important pro-inflammatory, permeability-increasing stimulus. Measurements of fluorescein isothiocyanate (FITC)-dextran extravasation from venules of the mouse cremaster muscle and rat hematocrit values were performed to judge changes of endothelial permeability in vivo. It is noteworthy that ANP strongly reduced the histamine-evoked endothelial barrier dysfunction in vivo. In vitro, ANP blocked the breakdown of transendothelial electrical resistance (TEER) induced by histamine. Moreover, as judged by immunocytochemistry and Western blot analysis, ANP inhibited changes of vascular endothelial (VE)-cadherin, β-catenin, and p120ctn morphology; VE-cadherin and myosin light chain 2 (MLC2) phosphorylation; and F-actin stress fiber formation. These changes seem to be predominantly mediated by the natriuretic peptide receptor (NPR)-A, but not by NPR-C. In summary, we revealed ANP as a potent endothelial barrier protecting agent in vivo and identified adherens junctions and the contractile apparatus as subcellular systems targeted by ANP. Thus, our study highlights ANP as an interesting pharmacological compound opening new therapeutic options for preventing endothelial leakage

    The Dual Edema-Preventing Molecular Mechanism of the Crataegus Extract WS 1442 Can Be Assigned to Distinct Phytochemical Fractions

    No full text
    The hawthorn (Crataegus spp.) extract WS 1442 is used against mild forms of chronic heart failure. This disease is associated with endothelial barrier dysfunction and edema formation. We have recently shown that WS 1442 protects against this dysfunction by a dual mechanism: it both promotes endothelial barrier integrity by activation of a barrier-enhancing pathway (cortactin activation) and inhibits endothelial hyperpermeability by blocking a barrier disruptive pathway (calcium signaling). In this study, we aimed to identify the bioactive compounds responsible for these actions by using a bioactivity-guided fractionation approach. From the four fractions generated from WS 1442 by successive elution with water, 95 % ethanol, methanol, and 70 % acetone, only the water fraction was inactive, whereas the other three triggered a reduction of endothelial hyperpermeability. Analyses of intracellular calcium levels and cortactin phosphorylation were used as readouts to estimate the bioactivity of subfractions and isolated compounds. Interestingly, only the ethanolic fraction interfered with the calcium signaling, whereas only the methanolic fraction led to an activation of cortactin. Thus, the dual mode of action of WS 1442 could be clearly assigned to two distinct fractions. Although the identification of the calcium-active substance(s) was not successful, we could exclude an involvement of phenolic compounds. Cortactin activation, however, could be clearly attributed to oligomeric procyanidins with a distinct degree of polymerization. Taken together, our study provides the first approach to identify the active constituents of WS 1442 that address different cellular pathways leading to the inhibition of endothelial barrier dysfunction

    Conclusions

    No full text
    corecore