13 research outputs found

    APLICACIÓN DE FENÓMENOS DE AUTO-ENSAMBLAJE Y ASOCIACIÓN SUPRAMOLECULAR CON CUCURBIT[n]URIL PARA EL DESARROLLO DE MATRICES DE SENSORES Y MATERIALES FUNCIONALES

    Full text link
    El auto-ensamblaje donde debido a la interacción con el disolvente moléculas de un compuesto anfifílico se asocian espontáneamente es un proceso general que puede servir para la preparación de entidades supramoleculares de gran tamaño con aplicación en la preparación de materiales tanto dispersos en fase liquida como sólidos insolubles. Por otra parte la asociación supramolecular puede ocurrir también entre moléculas diferentes y cuando una de ellas es una cápsula molecular esta puede albergar en su interior una molécula de tamaño inferior al de su abertura. Los CB[n] son oligómeros cíclicos de unidades de glicol uril unidas por puentes metileno que definen una cavidad en forma de calabaza hueca que permite alojar en su interior moléculas de colorantes fluorescentes. En la presente tesis doctoral se ha desarrollado una matriz de sensores para sales de amonio cuaternarias, ?-aminoácidos y ácido ?-hidroxibutírico. De la misma manera los CBs pueden también formar complejos con acetanilidas conteniendo grupos aminopropil. En la presente tesis doctoral se va a sacar ventaja del auto-ensamblaje de líquidos iónicos con estructura de imidazolio simétrico sustituído con dos grupos ?-alquenilo para formar liposomas. Otro tema de interés será establecer como el proceso de auto-ensamblaje influye en la asociación supramolecular entre líquidos iónicos con estructura de imidazolio y cucurbituriles. Por último el ensamblaje entre iones inorgánicos y biopolímeros naturales se empleará para pre-organizar los precursores inorgánicos de manera que cuando estos sufran polimerización el biopolímero actúe como agente plantilla controlando el tamaño de las partículas inorgánicas formadas. El objetivo general de la presente tesis doctoral es estudiar procesos de agregación que ocurren de manera espontánea en el seno de disoluciones acuosas y que dan lugar a la formación de complejos supramoleculares huésped-hospedador o a la formación de entidades supramoleculares de tipo liposomas.Buaki Sogo, M. (2012). APLICACIÓN DE FENÓMENOS DE AUTO-ENSAMBLAJE Y ASOCIACIÓN SUPRAMOLECULAR CON CUCURBIT[n]URIL PARA EL DESARROLLO DE MATRICES DE SENSORES Y MATERIALES FUNCIONALES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17830Palanci

    Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage

    Full text link
    [EN] Sustainable activated carbon can be obtained from the pyrolysis/activation of biomass wastes coming from different origins. Carbon obtained in this way shows interesting properties, such as high surface area, electrical conductivity, thermal and chemical stability, and porosity. These characteristics among others, such as a tailored pore size distribution and the possibility of functionalization, lead to an increased use of activated carbons in catalysis. The use of activated carbons from biomass origins is a step forward in the development of more sustainable processes enhancing material recycling and reuse in the frame of a circular economy. In this article, a perspective of different heterogeneous catalysts based on sustainable activated carbon from biomass origins will be analyzed focusing on their properties and catalytic performance for determined energy-related applications. In this way, the article aims to give the reader a scope of the potential of these tailor-made sustainable materials as a support in heterogeneous catalysis and future developments needed to improve catalyst performance. The selected applications are those related with H2 energy and the production of biomethane for energy through CO2 methanation.This research was funded by the Centro de Desarrollo Tecnologico Industrial-CDTI (ALMAGRID Project-CER-20191006), by the Instituto Valenciano de Competitividad Empresarial-IVACE-FEDER (BIO3 Project-IMDEEA/2019/44) and by the Agencia Valenciana de Investigacion-AVI (REWACER Project INNEST00/19/050).Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; García Pellicer, M.; Quijano-Lopez, A. (2020). Sustainable Carbon as Efficient Support for Metal-Based Nanocatalyst: Applications in Energy Harvesting and Storage. Molecules. 25(14):1-17. https://doi.org/10.3390/molecules25143123S1172514Updated Bioeconomy Strategyhttps://ec.europa.eu/knowledge4policy/node/34337_esSharma, H. K., Xu, C., & Qin, W. (2017). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235-251. doi:10.1007/s12649-017-0059-yGonzález-García, S., Gullón, B., Rivas, S., Feijoo, G., & Moreira, M. T. (2016). Environmental performance of biomass refining into high-added value compounds. Journal of Cleaner Production, 120, 170-180. doi:10.1016/j.jclepro.2016.02.015Liu, W.-J., Jiang, H., & Yu, H.-Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & Environmental Science, 12(6), 1751-1779. doi:10.1039/c9ee00206eManeerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C.-H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350-359. doi:10.1016/j.biortech.2015.10.047Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M., & Titirici, M.-M. (2010). Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Advanced Materials, 22(7), 813-828. doi:10.1002/adma.200902812Xiu, S., Shahbazi, A., & Li, R. (2017). Characterization, Modification and Application of Biochar for Energy Storage and Catalysis: A Review. Trends in Renewable Energy, 3(1), 86-101. doi:10.17737/tre.2017.3.1.0033Khezami, L., Chetouani, A., Taouk, B., & Capart, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157(1-3), 48-56. doi:10.1016/j.powtec.2005.05.009Contescu, C., Adhikari, S., Gallego, N., Evans, N., & Biss, B. (2018). Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C, 4(3), 51. doi:10.3390/c4030051IOANNIDOU, O., & ZABANIOTOU, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005. doi:10.1016/j.rser.2006.03.013Namaalwa, J., Sankhayan, P. L., & Hofstad, O. (2007). A dynamic bio-economic model for analyzing deforestation and degradation: An application to woodlands in Uganda. Forest Policy and Economics, 9(5), 479-495. doi:10.1016/j.forpol.2006.01.001Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. doi:10.1007/s11157-020-09523-3Lee, J., Kim, K.-H., & Kwon, E. E. (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79. doi:10.1016/j.rser.2017.04.002Prati, L., Bergna, D., Villa, A., Spontoni, P., Bianchi, C. L., Hu, T., … Lassi, U. (2018). Carbons from second generation biomass as sustainable supports for catalytic systems. Catalysis Today, 301, 239-243. doi:10.1016/j.cattod.2017.03.007Shen, Y., Zhao, P., & Shao, Q. (2014). Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous and Mesoporous Materials, 188, 46-76. doi:10.1016/j.micromeso.2014.01.005Azargohar, R., & Dalai, A. K. (2008). Steam and KOH activation of biochar: Experimental and modeling studies. Microporous and Mesoporous Materials, 110(2-3), 413-421. doi:10.1016/j.micromeso.2007.06.047Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. doi:10.1016/j.fuel.2017.12.054Lam, E., & Luong, J. H. T. (2014). Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4(10), 3393-3410. doi:10.1021/cs5008393Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117Jagiello, J., Kenvin, J., Celzard, A., & Fierro, V. (2019). Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 144, 206-215. doi:10.1016/j.carbon.2018.12.028Jagiello, J., Kenvin, J., Ania, C. O., Parra, J. B., Celzard, A., & Fierro, V. (2020). Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models. Carbon, 160, 164-175. doi:10.1016/j.carbon.2020.01.013Buaki-Sogo, M., Garcia, H., & Aprile, C. (2015). Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide. Catalysis Science & Technology, 5(2), 1222-1230. doi:10.1039/c4cy01258eBuaki-Sogó, M., Vivian, A., Bivona, L. A., García, H., Gruttadauria, M., & Aprile, C. (2016). Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis. Catalysis Science & Technology, 6(24), 8418-8427. doi:10.1039/c6cy01068gSomerville, M., & Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, 471-478. doi:10.1016/j.renene.2015.02.013Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., … Davies, C. A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. doi:10.1016/j.biombioe.2014.03.059Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1), 61-164. doi:10.2138/rmg.2015.80.04Wang, R., Sang, S., Zhu, D., Liu, S., & Yu, K. (2017). Pore characteristics and controlling factors of the Lower Cambrian Hetang Formation shale in Northeast Jiangxi, China. Energy Exploration & Exploitation, 36(1), 43-65. doi:10.1177/0144598717723814Pasel, J., Käßner, P., Montanari, B., Gazzano, M., Vaccari, A., Makowski, W., … Papp, H. (1998). Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3. Applied Catalysis B: Environmental, 18(3-4), 199-213. doi:10.1016/s0926-3373(98)00033-2Bazan, A., Nowicki, P., Półrolniczak, P., & Pietrzak, R. (2016). Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops. Journal of Thermal Analysis and Calorimetry, 125(3), 1199-1204. doi:10.1007/s10973-016-5419-5Rodríguez-reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159-175. doi:10.1016/s0008-6223(97)00173-5Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251-12285. doi:10.1021/acs.chemrev.5b00195Umeyama, T., & Imahori, H. (2012). Photofunctional Hybrid Nanocarbon Materials. The Journal of Physical Chemistry C, 117(7), 3195-3209. doi:10.1021/jp309149sNishihara, H., & Kyotani, T. (2012). Templated Nanocarbons for Energy Storage. Advanced Materials, 24(33), 4473-4498. doi:10.1002/adma.201201715Zhang, L., Xiao, J., Wang, H., & Shao, M. (2017). Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 7(11), 7855-7865. doi:10.1021/acscatal.7b02718Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., & Aurbach, D. (2017). Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 5(25), 12653-12672. doi:10.1039/c7ta00863eDai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563Zhang, C., Lv, W., Tao, Y., & Yang, Q.-H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science, 8(5), 1390-1403. doi:10.1039/c5ee00389jMian, M. M., & Liu, G. (2018). Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Advances, 8(26), 14237-14248. doi:10.1039/c8ra02258eXiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254-270. doi:10.1016/j.biortech.2017.06.163Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., … Chen, X. (2020). Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. Journal of Hazardous Materials, 388, 122026. doi:10.1016/j.jhazmat.2020.122026Xia, Y., Yang, Z., & Zhu, Y. (2013). Porous carbon-based materials for hydrogen storage: advancement and challenges. Journal of Materials Chemistry A, 1(33), 9365. doi:10.1039/c3ta10583kBack, C.-K., Sandí, G., Prakash, J., & Hranisavljevic, J. (2006). Hydrogen Sorption on Palladium-Doped Sepiolite-Derived Carbon Nanofibers. The Journal of Physical Chemistry B, 110(33), 16225-16231. doi:10.1021/jp061925pBhat, V. V., Contescu, C. I., & Gallego, N. C. (2010). Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon. Carbon, 48(8), 2361-2364. doi:10.1016/j.carbon.2010.02.025Cheon, Y. E., & Suh, M. P. (2009). Enhanced Hydrogen Storage by Palladium Nanoparticles Fabricated in a Redox-Active Metal-Organic Framework. Angewandte Chemie International Edition, 48(16), 2899-2903. doi:10.1002/anie.200805494Dufour, A., Celzard, A., Fierro, V., Broust, F., Courson, C., Zoulalian, A., & Rouzaud, J. N. (2015). Catalytic conversion of methane over a biomass char for hydrogen production: deactivation and regeneration by steam gasification. Applied Catalysis A: General, 490, 170-180. doi:10.1016/j.apcata.2014.10.038Dufour, A., Valin, S., Castelli, P., Thiery, S., Boissonnet, G., Zoulalian, A., & Glaude, P.-A. (2009). Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas. Industrial & Engineering Chemistry Research, 48(14), 6564-6572. doi:10.1021/ie900343bMarshall, J. (2014). Solar energy: Springtime for the artificial leaf. Nature, 510(7503), 22-24. doi:10.1038/510022aLin, Y., Pan, Y., & Zhang, J. (2017). CoP nanorods decorated biomass derived N, P co-doped carbon flakes as an efficient hybrid catalyst for electrochemical hydrogen evolution. Electrochimica Acta, 232, 561-569. doi:10.1016/j.electacta.2017.03.042Liu, X., Zhang, M., Yu, D., Li, T., Wan, M., Zhu, H., … Yao, J. (2016). Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 215, 223-230. doi:10.1016/j.electacta.2016.08.091Cui, W., Liu, Q., Xing, Z., Asiri, A. M., Alamry, K. A., & Sun, X. (2015). MoP nanosheets supported on biomass-derived carbon flake: One-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 164, 144-150. doi:10.1016/j.apcatb.2014.09.016Lai, F., Miao, Y.-E., Huang, Y., Zhang, Y., & Liu, T. (2015). Nitrogen-Doped Carbon Nanofiber/Molybdenum Disulfide Nanocomposites Derived from Bacterial Cellulose for High-Efficiency Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 8(6), 3558-3566. doi:10.1021/acsami.5b06274Chen, W.-F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., … Fujita, E. (2013). Biomass-derived electrocatalytic composites for hydrogen evolution. Energy & Environmental Science, 6(6), 1818. doi:10.1039/c3ee40596fCarmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:10.1016/j.ijhydene.2013.01.151Benck, J. D., Chen, Z., Kuritzky, L. Y., Forman, A. J., & Jaramillo, T. F. (2012). Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2(9), 1916-1923. doi:10.1021/cs300451qKibsgaard, J., & Jaramillo, T. F. (2014). Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 53(52), 14433-14437. doi:10.1002/anie.201408222Yuan, W., Wang, X., Zhong, X., & Li, C. M. (2016). CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(32), 20720-20729. doi:10.1021/acsami.6b05304Abghoui, Y., & Skúlason, E. (2017). Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides. The Journal of Physical Chemistry C, 121(43), 24036-24045. doi:10.1021/acs.jpcc.7b06811Humagain, G., MacDougal, K., MacInnis, J., Lowe, J. M., Coridan, R. H., MacQuarrie, S., & Dasog, M. (2018). Highly Efficient, Biochar-Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 8(29), 1801461. doi:10.1002/aenm.201801461Vrubel, H., & Hu, X. (2012). Molybdenum Boride and Carbide Catalyze Hydrogen Evolution in both Acidic and Basic Solutions. Angewandte Chemie International Edition, 51(51), 12703-12706. doi:10.1002/anie.201207111Miao, M., Pan, J., He, T., Yan, Y., Xia, B. Y., & Wang, X. (2017). Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 23(46), 10947-10961. doi:10.1002/chem.201701064Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 135(25), 9267-9270. doi:10.1021/ja403440eCallejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., … Schaak, R. E. (2014). Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 8(11), 11101-11107. doi:10.1021/nn5048553Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014). Self-Supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen from Water. Angewandte Chemie International Edition, 53(36), 9577-9581. doi:10.1002/anie.201403842Li, J.-S., Wang, Y., Liu, C.-H., Li, S.-L., Wang, Y.-G., Dong, L.-Z., … Lan, Y.-Q. (2016). Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 7(1). doi:10.1038/ncomms11204An, K., Xu, X., & Liu, X. (2017). Mo2C-Based Electrocatalyst with Biomass-Derived Sulfur and Nitrogen Co-Doped Carbon as a Matrix for Hydrogen Evolution and Organic Pollutant Removal. ACS Sustainable Chemistry & Engineering, 6(1), 1446-1455. doi:10.1021/acssuschemeng.7b03882Zhang, Y., Zuo, L., Zhang, L., Huang, Y., Lu, H., Fan, W., & Liu, T. (2016). Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 8(11), 7077-7085. doi:10.1021/acsami.5b12772Zhu, Y. G., Wang, X., Jia, C., Yang, J., & Wang, Q. (2016). Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis, 6(9), 6191-6197. doi:10.1021/acscatal.6b01478Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049Shao, M., Chang, Q., Dodelet, J.-P., & Chenitz, R. (2016). Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 116(6), 3594-3657. doi:10.1021/acs.chemrev.5b00462Zhang, Z., Gao, X., Dou, M., Ji, J., & Wang, F. (2017). Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 13(22), 1604290. doi:10.1002/smll.201604290Dong, Y., Zheng, L., Deng, Y., Liu, L., Zeng, J., Li, X., & Liao, S. (2018). Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. Journal of The Electrochemical Society, 165(15), J3148-J3156. doi:10.1149/2.0201815jesYang, L., Zeng, X., Wang, D., & Cao, D. (2018). Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 12, 277-283. doi:10.1016/j.ensm.2018.02.011Liu, F., Peng, H., Qiao, X., Fu, Z., Huang, P., & Liao, S. (2014). High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. International Journal of Hydrogen Energy, 39(19), 10128-10134. doi:10.1016/j.ijhydene.2014.04.176Xiong, L., Chen, J.-J., Huang, Y.-X., Li, W.-W., Xie, J.-F., & Yu, H.-Q. (2015). An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 12, 33-42. doi:10.1016/j.nanoen.2014.11.065Wang, G., Deng, Y., Yu, J., Zheng, L., Du, L., Song, H., & Liao, S. (2017). From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 9(37), 32168-32178. doi:10.1021/acsami.7b10668Lee, W. J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., & Lim, S. (2021). Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis Today, 368, 2-19. doi:10.1016/j.cattod.2020.02.017Ma, S., Tan, Y., & Han, Y. (2011). Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry, 20(4), 435-440. doi:10.1016/s1003-9953(10)60192-2Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. (2015). Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. doi:10.1039/c4ra16114aBailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2017). Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and Sustainable Energy Reviews, 69, 292-312. doi:10.1016/j.rser.2016.11.130Aryal, N., Kvist, T., Ammam, F., Pant, D., & Ottosen, L. D. M. (2018). An overview of microbial biogas enrichment. Bioresource Technology, 264, 359-369. doi:10.1016/j.biortech.2018.06.013Thema, M., Weidlich, T., Hörl, M., Bellack, A., Mörs, F., Hackl, F., … Sterner, M. (2019). Biological CO2-Methanation: An Approach to Standardization. Energies, 12(9), 1670. doi:10.3390/en12091670Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775-787. doi:10.1016/j.rser.2019.06.030Marques Mota, F., & Kim, D. H. (2019). From CO2methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chemical Society Reviews, 48(1), 205-259. doi:10.1039/c8cs00527cVariava, M. F., Church, T. L., Noorbehesht, N., Harris, A. T., & Minett, A. I. (2015). Carbon-supported gas-cleaning catalysts enable syn gas methanation at atmospheric pressure. Catalysis Science & Technology, 5(1), 515-524. doi:10.1039/c4cy00696hLi, J., Zhou, Y., Xiao, X., Wang, W., Wang, N., Qian, W., & Chu, W. (2018). Regulation of Ni–CNT Interaction on Mn-Promoted Nickel Nanocatalysts Supported on Oxygenated CNTs for CO2 Selective Hydrogenation. ACS Applied Materials & Interfaces, 10(48), 41224-41236. doi:10.1021/acsami.8b04220Swalus, C., Jacquemin, M., Poleunis, C., Bertrand, P., & Ruiz, P. (2012). CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: «In situ» supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 125, 41-50. doi:10.1016/j.apcatb.2012.05.019Roldán, L., Marco, Y.

    Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes

    Full text link
    [EN] Wearable sensors for non-invasive monitoring constitute a growing technology in many industrial fields, such as clinical or sport monitoring. However, one of the main challenges in wearable sensing is the development of bioelectrodes via the use of flexible and stretchable materials capable of maintaining conductive and biocompatible properties simultaneously. In this study, chitosan-carbon black (CH-CB) membranes have been synthesized using a straightforward and versatile strategy and characterized in terms of their composition and their electrical and mechanical properties. In this sense, CH-CB membranes showed good conductivity and mechanical resistance thanks to the presence of carbon black, which decreases the insulating behavior of chitosan, while flexibility and biocompatibility are maintained due to the dual composition of the membrane. Thus, flexible and biocompatible conductive bioelectrodes have been developed by the combined use of CH and CB without the use of toxic reagents, extra energy input, or long reaction times. The membranes were modified using the enzymes Glucose Oxidase and Laccase in order to develop flexible and biocompatible bioelectrodes for enzymatic glucose biofuel cells (BFCs) and glucose detection. A BFC assembled using the flexible bioelectrodes developed was able to deliver 15 mu W cm(-2), using just 1 mM glucose as biofuel, and up to 21.3 mu W center dot cm(-2) with higher glucose concentration. Additionally, the suitability of the CH-CB membranes to be used as a glucose sensor in a linear range from 100 to 600 mu M with a limit of detection (LOD) of 76 mu M has been proven. Such demonstrations for energy harvesting and sensing capabilities of the developed membrane pave the way for their use in wearable sensing and energy harvesting technologies in the clinical field due to their good mechanical, electrical, and biocompatible properties.This work has been supported by the Instituto Valenciano de Competitividad Empresarial (IVACE) in accordance with the IMAMCL/2020/1 agreement and within the framework of the BioSensCell project.Buaki-Sogo, M.; García-Carmona, L.; Gil Agustí, MT.; García Pellicer, M.; Quijano-Lopez, A. (2021). Flexible and Conductive Bioelectrodes Based on Chitosan-Carbon Black Membranes: Towards the Development of Wearable Bioelectrodes. Nanomaterials. 11(8):1-17. https://doi.org/10.3390/nano11082052S11711

    Biofuel cells: the sustainable energy in living beings

    Full text link
    [EN] Glucose fuel cells arise from the need for developing small devices able to supply energy in an independent manner while remain implanted in living organisms. In this field there are different challenges to be addressed related with low current densities and durability; important and challenging milestones when dealing with in vivo applications. In order to overcome the drawbacks of enzymatic biofuel cells, different approaches to achieve useful systems in terms of stability, capacity and durability for living organisms application are being proposed via enzymatic engineering techniques and improvements in enzyme immobilization onto electrodes and materials employed at this purpose[ES] La biopila de glucosa nace de la necesidad de desarrollar pequeños dispositivos capaces de suministrar energía de manera independiente implantados en un ser vivo. En esta disciplina existen retos a solventar relacionados con baja durabilidad y densidad de corriente; hitos desafiantes y serios cuando se trata de aplicaciones in vivo. Con el objetivo de abordar las limitaciones de la biopila enzimática se plantean estrategias para obtener un sistema útil en cuanto a la estabilidad, capacidad y durabilidad para aplicaciones en organismos vivos mediante ingeniería enzimática y mejoras en inmovilización de enzimas en electrodos y en los materiales utilizados para elloLos autores agradecen al Ministerio de Ciencia e Innovación por la financiación recibida a través del Subprograma Torres-Quevedo del Programa Estatal de Promoción del Talento y su Empleabilidad 2013-2016 en el marco del proyecto Bio2 (PTQ-14-07145)Buaki-Sogo, M.; Zubizarreta Saenz De Zaitegui, L.; Gil Agustí, MT.; García Pellicer, M.; Quijano-Lopez, A. (2018). Biopilas: la energia sostenible en los seres vivos. Avances en Quimica. 13(1):21-31. http://hdl.handle.net/10251/122507S213113

    Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide

    No full text
    Imidazolium-based silica microreactors were synthesized through self-organization/polymerization of the amphipathic organic salts that behave as templates for the construction of silica architecture and as catalytic active sites. The organic–inorganic hybrid microreactors displayed excellent catalytic performance in the conversion of CO2.</p

    Influence of self-assembly of amphiphilic imidazolium ionic liquids on their host-guest complexes with cucurbit[n]urils

    Full text link
    Two symmetric amphiphilic imidazolium ionic liquids having omega-undecenyl chains form supramolecular complexes with CB[7] and CB[8] in water as revealed by H-1 NMR spectroscopy and MALDI-MS. Binding constants in the range 10(4) to 10(5) M-1 were estimated from the conductivity measurements for the 1:1 complexes of these imidazolium ionic liquids with CB[7] and CB[8]. Radical initiated polymerization of these host-guest complexes at concentrations above the critical self-assembly concentration of imidazolium ionic liquids to form liposomes, destroys completely (CB[7]) or partially (CB[8]) the host-guest ionic liquid@CB[n] complex; this behaviour was proved by titration with acridine orange tricyclic dye, of CB[n]s in the colloidal solutions of the liposomes before and after performing dialysis to remove free CB [n]s. Thus, the increase in the fluorescence emission of acridine orange by CB[7] is not observed if the polymerized ionic liquid@CB[7] complex is submitted to dialysis to remove uncomplexed CB[7]. Analogous study by titration of absorbance change of acridine orange solutions caused by CB[8], reveals only a partial destruction of the host-guest complex by self-assembly of amphiphilic ionic liquid above the critical self-assembly concentration. The results obtained have been rationalized considering that the driving force for the formation of supramolecular ionic liquid@CB[n] complexes is a hydrophobic interaction between the apolar alkenyl chain and the cucurbituril interior cavity and that these hydrophobic interactions are disturbed when self-assembly leading to liposomes occurs.Financial support by the Spanish Ministry of Science and Education (CTQ2009-11587 and CTQ2010-18671) is gratefully acknowledged. M.B.-S. thanks also the Spanish Ministry for a postgraduate scholarship (CTQ2007-67805)Buaki-Sogo, M.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Influence of self-assembly of amphiphilic imidazolium ionic liquids on their host-guest complexes with cucurbit[n]urils. Tetrahedron. 68(22):4296-4301. doi:10.1016/j.tet.2012.03.044S42964301682

    Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing

    Full text link
    [EN] Cucurbit[n]urils have been supported on graphene to develop sensitive and selective electrodes. The electrochemical response of modified electrodes containing graphene or graphene plus cucurbiturils has been studied for three probe molecules including hydroxymethylferrocene, ferrocyanide and methylviologen. It was found that the properties of these modified electrodes are derived from an increase in electron mobility and catalytic activity imparted by graphene and the selective complexation and molecular recognition due to cucurbit[n]urils. These properties of the graphene/cucurbit[n]urils modified electrodes have been applied for the electrochemical detection of relevant biomolecules as tryptophan at 0.69 x 10(-7) M concentration.Financial support by the Spanish Ministry of Economy and Competitiveness (CTQ2009-11856 and CTQ2007-67805/PPQ), the Comunidad Autonoma de Madrid (S2009/PPQ-1642, AVANSENS) and the Ministry of Science and Innovation (CTQ2008-02272/PPQ) is gratefully acknowledged. M. del Pozo thanks the Ministry of Science and Innovation for a PhD grant.Buaki-Sogo, M.; Del Pozo, M.; Hernández, P.; García Gómez, H.; Quintana, C. (2012). Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta. 101:135-140. https://doi.org/10.1016/j.talanta.2012.09.016S13514010

    Host guest complexes between cucurbit[n]urils and acetanilides having aminopropyl units

    Full text link
    [EN] 2-(Propylamino)acetamide of aniline (1a), and bis-2-(propylamino)acetamide of ortho- (1b) and para-(1c) phenylenediamine form host-guest complexes with CB[6], CB[7] and CB[8] as evidenced by the variations in the H-1 NMR spectroscopy chemical shifts and observation in MALDI-TOF-MS and ESI-MS of ions at the corresponding mass. Binding constants for the 1:1 complexes were estimated from fluorescence titrations and were in the range 10(5)-10(6) M-1. Models based on molecular mechanics for these supramolecular complexes are provided. In spite of the different geometries arising from the ortho- or para-substitution, phenylenediamides form complexes of similar strength in which the hydrophobic alkyl chains are accommodated inside the host cavity. Formation of these host-guest complexes in the solid state was also achieved by modifying an aminopropyl silica with chloroacetanilides and preparing three silica having analogues of compounds 1a-c anchored to the solid particles. Titrations showed, however, that these solids can adsorb a large percentage of CBs by unselective interactions that are not related to the formation of inclusion complexes.Financial support by the Spanish Ministry of Science and Education (CTQ2012-36351 and CTQ2010-18671) is gratefully acknowledged. Mireia Buaki-Sogo also thanks the Spanish ministry for a post-graduate scholarship (CTQ2007-67805).Buaki-Sogo, M.; Montes Navajas, PM.; Alvaro Rodríguez, MM.; García Gómez, H. (2013). Host guest complexes between cucurbit[n]urils and acetanilides having aminopropyl units. Journal of Colloid and Interface Science. 399:54-61. https://doi.org/10.1016/j.jcis.2013.02.027S546139

    Fluorimetric detection and discrimination of alfa-amino acids based on tricryclic basic dyes and cucurbiturils supramolecular assembly

    Full text link
    [EN] A sensor array made by combining four fluorescent tricyclic basic dyes with cucurbiturils is able to identify and discriminate 18 alpha-amino acids up to 10(-4) M without the need of enzyme activation.The financial support by the Spanish DGI (CTQ 2009-s11658) is gratefully acknowledged. The authors thank S. Jimenez for his collaboration on the hITeQ platform.Baumes, LA.; Buaki-Sogo, M.; Jolly, J.; Corma Canós, A.; García Gómez, H. (2011). Fluorimetric detection and discrimination of alfa-amino acids based on tricryclic basic dyes and cucurbiturils supramolecular assembly. Tetrahedron Letters. 52(13):1418-1421. https://doi.org/10.1016/j.tetlet.2011.01.071S14181421521
    corecore