2 research outputs found

    Clinical Interest of Serum Alpha-2 Macroglobulin, Apolipoprotein A1, and Haptoglobin in Patients with Non-Alcoholic Fatty Liver Disease, with and without Type 2 Diabetes, before or during COVID-19

    No full text
    In patients with non-alcoholic fatty liver disease (NAFLD) with or without type 2 diabetes mellitus (T2DM), alpha-2 macroglobulin (A2M), apolipoprotein A1 (ApoA1), and haptoglobin are associated with the risk of liver fibrosis, inflammation (NASH), and COVID-19. We assessed if these associations were worsened by T2DM after adjustment by age, sex, obesity, and COVID-19. Three datasets were used: the “Control Population”, which enabled standardization of protein serum levels according to age and sex (N = 27,382); the “NAFLD-Biopsy” cohort for associations with liver features (N = 926); and the USA “NAFLD-Serum” cohort for protein kinetics before and during COVID-19 (N = 421,021). The impact of T2DM was assessed by comparing regression curves adjusted by age, sex, and obesity for the liver features in “NAFLD-Biopsy”, and before and during COVID-19 pandemic peaks in “NAFLD-Serum”. Patients with NAFLD without T2DM, compared with the values of controls, had increased A2M, decreased ApoA1, and increased haptoglobin serum levels. In patients with both NAFLD and T2DM, these significant mean differences were magnified, and even more during the COVID-19 pandemic in comparison with the year 2019 (all p < 0.001), with a maximum ApoA1 decrease of 0.21 g/L in women, and a maximum haptoglobin increase of 0.17 g/L in men. In conclusion, T2DM is associated with abnormal levels of A2M, ApoA1, and haptoglobin independently of NAFLD, age, sex, obesity, and COVID-19

    Characterization and Pharmacological Validation of a Preclinical Model of NASH in Göttingen Minipigs

    No full text
    International audienceBackground: Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, which is associated with features of metabolic syndrome. NAFLD may progress in a subset of patients into nonalcoholic steatohepatitis (NASH) with liver injury resulting ultimately in cirrhosis and potentially hepatocellular carcinoma. Today, there is no approved treatment for NASH due to, at least in part, the lack of preclinical models recapitulating features of human disease. Here, we report the development of a dietary model of NASH in the Göttingen minipig.Methods: First, we performed a longitudinal characterization of diet-induced NASH and fibrosis using biochemical, histological, and transcriptional analyses. We then evaluated the pharmacological response to Obeticholic acid (OCA) treatment for 8 weeks at 2.5mg/kg/d, a dose matching its active clinical exposure.Results: Serial histological examinations revealed a rapid installation of NASH driven by massive steatosis and inflammation, including evidence of ballooning. Furthermore, we found the progressive development of both perisinusoidal and portal fibrosis reaching fibrotic septa after 6 months of diet. Histological changes were mechanistically supported by well-defined gene signatures identified by RNA Seq analysis. While treatment with OCA was well tolerated throughout the study, it did not improve liver dysfunction nor NASH progression. By contrast, OCA treatment resulted in a significant reduction in diet-induced fibrosis in this model.Conclusions: These results, taken together, indicate that the diet-induced NASH in the Göttingen minipig recapitulates most of the features of human NASH and may be a model with improved translational value to prioritize drug candidates toward clinical development
    corecore