6 research outputs found

    The characteristics of a modern oxy-fuel power plant

    Get PDF
    This paper presents the thermodynamic and economic analyses of four variants of a supercritical oxy-type plant. These variants differed in terms of air separation units (ASU, variants: V1—cryogenic; V2—hybrid; equipped with a three-end (V3a) or four-end (V3b) high-temperature membrane) and boilers (V1 and V3a—lignite-fired fluidized-bed; V2 and V3b—hard-coal-fired pulverized-fuel). The gross power of steam turbine unit (STU) was 600 MW. The live and reheated steam parameters were 650 °C/30 MPa and 670 °C/6.5 MPa, respectively. The influence of the ASUs’ operating parameters on the ASUs’ auxiliary power rate and boiler efficiency (V3a and V3b only) was studied. The ASUs’ operating parameters for maximum net efficiency were then determined. The decrease in the net efficiency compared to a reference plant (with a classic fluidized-bed or pulverized-fuel boiler) fluctuated in the range 7.2 (V3b)–11.2 (V1) p.p. An analysis of the waste heat utilization was performed (fuel drying—V1 and V3a; STU steam-water heat exchangers replacing). Thus, the efficiency decreases fluctuated in the range 4.3 (V3b)–10.2 (V1) p.p. The economic analysis showed that in order for the variants to be economically viable, the unit CO2 emission cost should be greater than 42.2 (V1) or 22.0 (V3b) EUR/MgCO2

    Liquid methanol energy storage technology

    No full text
    The paper presents technologies currently being developed for methanol production and its applications. Particular attention was paid to energy storage technology in the form of “renewable” methanol, which is produced from hydrogen generated from surplus energy from renewable energy sources and from captured CO2. The global methanol market was characterized, i.e. global demand, major producers and global demand for products made from methanol. The installation of methanol production and purification with stoichiometry as well as the methodology for assessing the efficiency of such an installation are also presented. The results of the analysis of such an installation were discussed in accordance with the methodology given

    Methanol Production in the Brayton Cycle

    No full text
    This article presents the concept of renewable methanol production in the gas turbine cycle. As part of the work, an analysis was performed, including the impact of changing the parameters in the methanol reactor on the obtained values of power, yield and efficiency of the reactor, and chemical conversion. The aim of this research was to investigate the possibility of integrating the system for the production of renewable methanol and additional production of electricity in the system. The efficiency of the chemical conversion process and the efficiency of the methanol reactor increases with increasing pressure and decreasing temperature. The highest efficiency values, respectively η = 0.4388 and ηR = 0.3649, are obtained for parameters in the reactor equal to 160 °C and 14 MPa. The amount of heat exchanged in all exchangers reached the highest value for 14 MPa and 160 °C and amounted to Q˙ = 2.28 kW. Additionally, it has been calculated that if an additional exchanger is used before the expander (heating the medium to 560 °C), the expander’s power will cover the compressor’s electricity demand
    corecore