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Abstract: This paper presents the thermodynamic and economic analyses of four variants of a
supercritical oxy-type plant. These variants differed in terms of air separation units (ASU, variants:
Vl1—cryogenic; V2—hybrid; equipped with a three-end (V3a) or four-end (V3b) high-temperature
membrane) and boilers (V1 and V3a—lignite-fired fluidized-bed; V2 and V3b—hard-coal-fired
pulverized-fuel). The gross power of steam turbine unit (STU) was 600 MW. The live and reheated
steam parameters were 650 °C/30 MPa and 670 °C/6.5 MPa, respectively. The influence of the ASUs’
operating parameters on the ASUs’ auxiliary power rate and boiler efficiency (V3a and V3b only)
was studied. The ASUs’ operating parameters for maximum net efficiency were then determined.
The decrease in the net efficiency compared to a reference plant (with a classic fluidized-bed or
pulverized-fuel boiler) fluctuated in the range 7.2 (V3b)-11.2 (V1) p.p. An analysis of the waste heat
utilization was performed (fuel drying—V1 and V3a; STU steam-water heat exchangers replacing).
Thus, the efficiency decreases fluctuated in the range 4.3 (V3b)-10.2 (V1) p.p. The economic analysis
showed that in order for the variants to be economically viable, the unit CO, emission cost should be
greater than 42.2 (V1) or 22.0 (V3b) EUR/MgCOs.

Keywords: oxy-fuel power plant; air separation unit; CO, capture unit; CO, compression unit;
clean energy

1. Introduction

In March 2006, the Green Paper “A European Strategy for Sustainable, Competitive and Secure
Energy” was published. It has been adopted by the European Commission and its main objective is to
achieve the security of the energy sector by formulating appropriate political and economic directions.
This goal can be achieved in line with sustainable development and climate change policies. Thus,
at the European Council Summit held on the 8th and 9th of March 2007, in order to limit the increase in
global average temperature to 2 °C above the pre-industrial temperature, an action plan integrating the
energy and climate policy of the so-called European Union Climate and Energy Package was agreed.
This plan assumed: (a) a reduction in greenhouse gas emissions of at least 20% before the end of
2020 compared to 1990 levels; (b) the rationalization of energy use and a consequent reduction in its
consumption by 20%; (c) an increase in the proportion of energy produced from renewable energy
sources to 20% of total energy consumption in the European Union (EU) by 2020; and (d) achieving at
least a 10% share of biofuels in transport fuels.

The first three (a—c) goals are of the utmost importance for the EU’s energy sector because this sector
emitted 36% of the world’s carbon dioxide emissions caused by human activities in 2015 [1]. The first
strategy to meet the goals (especially a and b) is to increase the efficiency of electricity generation [2,3]
and transmission, and a reduction of the end user’s electrical losses. Another proposed solution
is to increase the number of power plants using renewable energy sources (realizing assumptions
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a and c). However, in this case, the limitations stem from climatic conditions and the availability
of renewable energy sources in individual EU countries. It is also possible to build nuclear power
plants (fulfilling assumption a). However, the socio-political situations prevailing in some countries
preclude the introduction of these technologies. The last solution is the use of sequestration and
storage of carbon dioxide (CCS—carbon dioxide capture and storage technologies) [4]. Currently,
three technologies for carbon capture are being developed: pre-combustion, post-combustion, and
oxy-combustion. The implementation of these technologies results in a significant reduction in the
efficiency of a power plant’s electricity production [5-7]. Moreover, it is necessary to store the captured
carbon dioxide (e.g., by injecting it into an underground oil deposit for oil extraction or by storing it in
the seabed). The EU requires that currently built power plants are prepared to add a CCS unit into
their infrastructure. Those power plants are called “capture-ready” power plants.

The pre-combustion CCS technologies [8,9] focus on CO, capture before the combustion process.
Integrated gasification combined cycle (IGCC) power plants are mainly being considered for these
technologies [10-15]. The net efficiency of electricity generation for such power plants are 9-12 p.p. [8,10,16]
lower than that of conventional IGCC power plants (without CO, capture). According to research
by Franz et al. [17], the efficiency decrease can be reduced to about 6 p.p., while the environmental
performance can be improved significantly by gasification of biomass [18,19] instead of coal.

The post-combustion CCS technologies [20,21] focus on the separation of carbon dioxide and
nitrogen, the two main components of combustion process flue gas. Several separation methods can
be used for this purpose, such as: chemical absorption [22-27] (mainly 30% Ethanolamine (MEA)
or Methyl diethanolamine (MDEA) solution, [24,28]) resulting in an efficiency decrease of coal-fired
power plants by 9-12 p.p. [10,21,29-33]; membrane separation with relatively cheap membranes with
very good properties [6,34-37]; and carbonate looping process [38,39]. The decrease in the net efficiency
can be reduced by deep thermal integration of all power plant installations [5].

The main assumption of oxy-combustion technology [40-43] is the elimination of nitrogen from
the oxidant. As a result, flue gas with a high concentration of CO; and moisture is produced.
Thus, after the process of flue gas drying has been completed, the CO, capture process is much less
complicated and energy intensive. The disadvantage of the technology is the necessity of using an
air separation unit (ASU) which produces oxygen of adequate purity. For oxygen production, all the
available gas separation methods are used (e.g., chemical absorption, cryogenic processes [44-46],
and high-temperature membranes [41,47-49] and are currently being researched at the laboratory
scale [50]. The power consumption of the carbon dioxide capture process in this technology is reduced
to a value near the lower limit of the range of 110-170 kWh/tCO, [21,51,52]. Currently, pulverized-fuel
boilers [53-55] and fluidized-bed boilers [56] are being studied with a view to oxy-combustion
implementation and pilot oxy-type boilers with thermal power of 15 and 30 MWy, are being tested [56].

The overview of the thermodynamic and economic analyses that are presented in this paper was
performed as part of a work that was co-financed by the National Centre for Research and Development
within the framework of Contract SP/E/2/66420/10—-Strategic Research Program—-Advanced
Technologies for Energy Generation: Development of a technology for oxy-combustion pulverized-fuel
and fluid boilers integrated with CO, capture. The basic oxy-type power plant analyzed in this
research was equipped with a cryogenic air separation unit (ASU). The thermodynamic and economic
performance of this ASU was improved by adding initial separation with use of the low-temperature
membranes. Further improvement of the oxy-type power plant performance was achieved by use of
the ASU based on the novel high-temperature membranes. Finally, the heat recovery analysis was
performed to minimize the heat loss in the oxy-type power plant.

The thermodynamic and economic results were compared with similar results for a reference
power plant (conventional lignite and hard-coal-fired power plant). All analyses available in the
world literature do not comprehensively cover the solutions available in the field of oxy-combustion
technology with the same assumptions. Comparable results in the field of presented structures
in literature differ radically from one another, due to the fact that the authors adopted different
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assumptions for a particular structure in their articles. This makes it impossible to perform a
comprehensive comparative analysis, such as the authors of this article are pleased to present.

2. Description of the Analyzed Oxy-Type Power Plant

The overall structure of this thermal power plant, integrated with oxy-combustion technologies is
presented in Figure 1. This power plant consists of:

e Boiler island consisting, inter alia, of a steam boiler and a flue gas cleaning-drying system (FD);
e  Steam turbine unit (STU);

e  Air separation unit (ASU);

e  Carbon dioxide capture and compression unit (CC).
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Figure 1. Overall scheme of an oxy-type power plant (CC—carbon dioxide capture and compression
unit; FD—flue gas cleaning-drying system; G—electric generator).

The steam boiler produces the steam to be fed to the steam turbine, where the steam energy is
transformed into mechanical energy. Then, this energy is used to drive the electricity generator (G).
Oxygen is produced in the ASU and then mixed with recirculated flue gas which is then fed to the
boiler as an oxidizer. The oxygen content in the oxidizer has a significant impact on the maximum flue
gas temperature in the boiler’s combustion chamber (the higher the oxygen content, the higher the
maximum temperature [57,58] and the fuel’s ignition temperature). Therefore, this value should not
deviate significantly from the oxygen content in the air. With such combustion processes taking place
in the boiler, a flue gas consisting mainly of CO, and water vapor is produced. Next, the flue gas is fed
to the flue gas cleaning-drying system and then to the CO; capture and compression unit (CC). In the
latter, the flue gas is prepared for transport (compression and CO, separation).

The summarized results of the analysis of the following four variants of an oxy-type power plant
presented in this paper:

e  Variant V1—an oxy-type power plant equipped with a lignite-fired, fluidized-bed boiler and
cryogenic ASU [59,60]:
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e  Variant V2—an oxy-type power plant equipped with a hard-coal-fired, pulverized-fuel boiler and
hybrid ASU (membrane-cryogenic) [61-64];

e  Variant V3a—an oxy-type power plant equipped with a lignite-fired, fluidized-bed boiler and
ASU with a three-end type, high-temperature membrane (HITM) [65,66];

e  Variant V3b—an oxy-type power plant equipped with a hard-coal-fired, pulverized-fuel boiler
and ASU with a four-end type, high-temperature membrane (HTM) [3,67,68].

Therefore, the analyzed variants of the oxy-type power plant differ in terms of the construction
of the boiler and the air separation unit. In all variants, the same steam turbine unit (presented in
Figure 2) and the same CO, capture and compression unit (presented in Figure 3) were used.
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Figure 2. Scheme of the steam turbine unit (BP-bleeds condensate pump; CND-condenser;
COP—-condensate pump; DEA—-deaerator; MP-main pump; ST-steam turbine; (h)-high pressure;
(i)-intermediate pressure; (1)-low pressure; WH-feedwater heater).
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Figure 3. Scheme of the CO, capture and compression unit (CDP-condensed CO, pump; FC—flue gas
compressor; FIC—flue gas intercooler; PS-phase separator).

Ultra-critical steam parameters (live steam-650 °C/30 MPa; reheated steam-670 °C/6.5 MPa) were
assumed for the steam turbine unit, and the boiler’s feedwater temperature was 310 °C. The STU
was equipped with four low-pressure-feedwater heaters (WH1-WH4), three high-pressure-feedwater
heaters (WH5-WH?), and one steam cooler (WHS). The pressures in the deaerator (DEA) and of the
water at the outlet of the condensate pump (COP), respectively, were 1.2 MPa and 1.6 MPa, and the
condenser (CND) pressure was 5 kPa. The electric power of the generator (G), which is equal to the
gross electrical power of the power plant, was 600 MW. Other assumptions based on the findings in
the literature [3,67-69] are presented in Table 1.
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Table 1. Steam turbine unit assumptions.

Quantity, Unit Value

Mechanical losses of the steam turbine, MW 6

the high-pressure part of the steam turbine (ST(h)), % 920
Isentropic efficiency of the groups of the stages of:  the intermediate-pressure part of the steam turbine (ST(i)), % 93

the low-pressure part of the steam turbine (ST(1)), % 86
Isentropic efficiency of the last group of the stages of the low-pressure part of the ST, % 81
Temperature difference on the cold side of the feedwater heaters, K 10
Temperature increase in the low-pressure feedwater heaters (WH1-4), K 30
Temperature increase in the WH6 fed water heater, K 40
Temperature of the water in the outlet of the WHS feedwater heater, °C 305
Pinch point for the feedwater heaters, K 3
Generator efficiency, % 99
Isentropic efficiency of the pumps, % 85
Thermal efficiency of the feedwater heaters, steam cooler, and deaerator, % 99.5

The thermodynamic parameters and composition of the flue gas at the inlet to the CO, capture
and compression unit (D1 point in Figure 3) were calculated during the computation of the boiler
model. The CC unit can be divided into two main parts. In the first, the flue gas was:

e Compressed in two compressor sections, FC1 and FC2, to a pressure of 0.4 MPa and
1.6 MPa, respectively;

e Cooled to a temperature of 46 °C (the temperature at which most of the water will condense) in
two flue gas intercoolers (FIC1 and FIC2);

e  Deprived of a significant portion of its water in two-phase separators (PS1 and PS2).

In the second part of the CC unit:

e  The flue gas was further compressed to a pressure of 6.5 MPa in the last compressor section (FC3);

e  The flue gas was cooled in the flue gas intercooler (FIC3) to the temperature at which most of the
CO, will condense (variants V1 and V2—3 °C; variants V3a and V3b—11 °C);

e The liquefied gas (containing a high content of CO;) in the third phase separator (PS3)
was separated;

e  The liquefied gas pressure was increased to transport pressure (15 MPa) in the CO, pump (CDP).

Thus, in this part of the installation, the CO, was compacted and prepared for transport. It
was assumed that the isentropic efficiency of the flue gas compressor sections was 85% and the
mechanical—electric efficiency of these sections was 98%.

2.1. Variant V1—Steam Boiler and Description of the ASU

In addition to the steam turbine unit and the CO, capture and compression unit described in
Section 2, the variant V1 of the oxy-type power plant was equipped with a lignite-fired fluidized-bed
boiler and an air separation unit based on the cryogenic method of oxygen separation from the
air [59,60]. The scheme of these two installations where they have been integrated with each other is
presented in Figure 4.

In this example of an oxy-type power plant, a cryogenic ASU modelled in the ASPEN PLUS
software was used. The general principle of this installation is to compress and cool down (condensation
of the oxygen) a specific amount of air to achieve the desired purity of the oxygen. The air, taken from
the environment, flows through four compressor sections (AC1-4), and four intercoolers (AIC) and is
fed to the stream divider (DIV), where it is divided into two streams. These streams are cooled down in
a multi-stream heat exchanger (MHE) by oxygen and nitrogen streams to the appropriate temperature



Energies 2019, 12, 3374 6 of 34

required by the separation process. Next, the bigger air stream flows through the throttle valve (TV1)
and is then fed to the high-pressure distillation column (HPC). The remaining air flows through the
expander (EXP) and is fed to a low-pressure distillation column (LPC). In the high-pressure column,
there is an initial separation of the air into an almost pure stream of liquefied nitrogen and a stream of
nitrogen, oxygen (oxygen content ~40%) and argon mixture. Next, these streams are throttled in TV2
and TV3 valves to slightly higher pressures than the LPC’s pressure. Before it reaches the TV3 valve,
the gas stream is further cooled down. In the low-pressure column, the air components are separated
again. As a result, a nitrogen stream and an oxygen stream (95% pure) are created and separated.
The pressures of those streams are at near ambient pressure.

_——— e —— — ] ——— — — — — — 4
3_ CRYOGENIC ASU N Nitrogen

CC UNIT

RC

|

|

|

|

|

@ LPC |
I |
° |
|

|

|

|

Oxygen
+3 For =] 8%

NI Nitrogen | |
T
Oxygen =

HPC

e — s s o s ot s

STEAM TURBINE UNIT
(STU)

o — —
S
-2
Flue gas +
Oxygen
~
l[w’

Nitrogen  [yp]

Figure 4. Scheme of the fluidized-bed boiler integrated with a cryogenic ASU (AC-air compressor;
AIC-air intercooler; CCH-combustion chamber; DIV-division valve; ECO-economizer; EP—electrostatic
precipitator; EV-evaporator; EXP-expander; F-fan; FGH-flue gas heater; HPC-high-pressure
column; LC-lignite crusher; LD-lignite dryer; LPC-low-pressure column; LSH-live steam heater;
MHE-multi-stream heat exchanger; NH-nitrogen heater; OH-oxygen heater; RC-regenerative cooler;
RSH-reheated steam heater; TV-throttle valve).

In the scheme presented in Figure 4, the air fan and the vacuum pump are absent (Nag = 0 MW,
Nyp = 0 MW). The model of the fluidized-bed boiler was constructed using the GateCycle program.
The structure of the boiler was divided into two parts: a radiation part and a convection part. For the
modelling of the radiation part, the fluidized-bed boiler module from the GateCycle library was used.
This element models the operation of a combustion chamber with an evaporator (CCH + EV) and
the last stages of the live steam (LSH2) and the reheated steam (RSH2) superheaters. The following
parts are located in the convection part of the boiler: the first stages of the live steam (LSH1) and
the reheated steam (RSH1) superheaters; an economizer (ECO); a recirculated flue gas heater (FGH);
and a parallel-connected oxygen heater (OH) and a nitrogen heater (NH). Additionally, the following
elements were incorporated into the structure: a flue gas exhaust fan (F1); a recirculated flue gas
fan (F2); a high-purity oxygen fan (F3); a lignite dryer (LD); a lignite crusher (LC); an electrostatic
precipitator (EP); and a flue gas dryer (FD).

In variant V1 of an oxy-type power plant, the lignite crusher was used, together with the following
four fans: the flue gas exhaust fan (F1); the recirculated flue gas fan (F2); the high-purity oxygen fan
(F3); and the nitrogen fan (F4).

Due to the need to maintain combustion conditions similar to the combustion conditions in
the air, it was necessary to incorporate flue gas recirculation in the structure of oxy-type boilers.
In this situation, the recirculated flue gas was taken from the outlet of the electrostatic precipitator.
According to the scheme (Figure 4), this flue gas had not yet been dried in the FD, so it had a high
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water content [66,67,70]. This method of recirculation is called “wet” recirculation [71]. So-called “dry”
recirculation can also be used [71] (recirculated flue gas is taken from the outlet of the flue gas dryer).
However, in this case, this solution significantly reduces the thermal efficiency of the boiler [60,70].
The main assumptions for the cryogenic ASU model computations have been presented in Table 2 [59].

Table 2. Assumptions for the cryogenic ASU (variant V1).

Quantity, Unit Value

Nitrogen 0.781
Molar composition of air, Oxygen 0.210

Argon 0.009
Air parameters—pressure/temperature, bar/°C 1.0132/20
Isentropic/mechanical efficiency of the air compressor sections, % 85/99
Cooling temperature of the air intercoolers, °C 25.0
Degree of overheating of the air directed from the MHE to the HPC, K 2
Degree of overheating of the air directed from the MHE to the EXP, K 1
Air pressure drop in the MHE, bar 0.1
Nitrogen and oxygen pressures at the outlet of the ASU, bar 1.015
Pressure at the outlet of the throttle valve TV1, bar 5.1
Pressure at the outlet of the EXP, bar 1.2
Pressure at the outlet of the throttle valve TV2, bar 1.6
Pressure at the outlet of the throttle valve TV3, bar 1.5
Pressure in the HPC, bar 5
Pressure in the LPC, bar 1.15

The fuel used to feed the combustion chamber of the steam boiler was lignite with a lower heating
value of 9960 k]/kg and the following mass composition: carbon (c)—28.6%; hydrogen (h)—2.2%;
sulfur (s)—0.95%; nitrogen (n)—0.25%; oxygen (0)—8%; ash (a)—17.5%; and water (w)—42.5%. It was
assumed that the oxygen content in the oxidizer was 30% [57,58,72,73] and the excess oxidant ratio was
1.2. The flue gas flow rate was split in two to OH and NH-fed heat exchangers. For the computation of
the fuel dryer model, it was assumed that the decrease in the gas temperature in the fuel dryer was
60 K and the minimum temperature difference between the lignite and gas was 20 K; only part of the
fuel stream was dried. The amount of dried fuel was determined by the possibility of drying the lignite
to a moisture content of 30%. The remaining assumptions for the computations of the lignite-fired,
fluidized-bed boiler model are presented in Table 3.

Table 3. Assumptions for an oxy-type fluidized-bed boiler (variant V1).

Quantity, Unit Value
Temperature at the outlet of the ECO, °C 340
Temperature at the outlet of the evaporator, °C 480
Temperature of the live steam at the outlet of boiler, °C 654.9
Pressure of the live steam at the outlet of the boiler, MPa 31.1
Temperature of the reheated steam at the outlet of the boiler, °C 6724
Pressure of the reheated steam at the outlet of the boiler, MPa 6.14
Temperature difference on the cold side of the FGH, K 23
Temperature difference on the cold side of the OH and NH, K 30
Temperature difference on the cold side of the ECO, K 55
Temperature of the oxygen at the inlet to the boiler, °C 15
Share of bottom Ash/Fly ash, % 40/60
The ratio of unburned carbon to its content in the fuel, % 0.5
Relative heat loss through radiation in the boiler, % 0.2
Isentropic efficiency of the fans, % 75
Relative pressure loss of the water-live steam path in the boiler, % 11

Relative pressure loss in the reheated steam superheater, % 3
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2.2. Variant V2—Steam Boiler and Description of the ASU

The variant V2 of an oxy-type power plant was equipped with a hard-coal-fired, pulverized-fuel
boiler and a hybrid air separation unit [61-64]. A schematic diagram of both installations is presented

in Figure 5.
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Figure 5. Scheme of the pulverized-fuel boiler integrated with a hybrid ASU (AF-air fan, HCM
-hard-coal mill; MEM-membrane module; VP-vacuum pump).

This kind of oxy-type power plant uses cryogenic air separation (as in variant V1). The difference
is that an additional single-stage membrane separator is used in the structure in order to raise the
oxygen content at the inlet to the cryogenic part of the ASU. The membrane installation was modeled
in the Aspen Custom Modeler 2004 [61-64]. Such changes in the ASU’s structure greatly reduce the
flow rate of gas through the compressors and the cryogenic installation; thus, the auxiliary power of
the ASU is reduced as well. The three-end membrane module (MEM) was used in the membrane part
of the ASU. On the supply side of the membrane module, an air fan (AF) was installed and on the
permeate side and a vacuum pump (VP) was used.

The pulverized-fuel boiler used in variant V2 of an oxy-type power plant was modelled in the
GateCycle software. As in the previous variant (V1), so-called “wet” flue gas recirculation was used.
The boiler consisted of a combustion chamber (CCH); an evaporator (EV); a live steam superheater
(LSH); a reheated steam superheater (RSH); an economizer (ECO); a recirculated flue gas heater (FGH);
an oxygen heater (OH); a flue gas exhaust fan (F1); a recirculated flue gas fan (F2); a high-purity oxygen
fan (F3); a hard coal mill (HCM); an electrostatic precipitator (EP); and a flue gas dryer (FD). Unlike in
the previous example (variant V1), the live and reheated steam superheaters were not divided into two
sections. The reason for this was that in variant V2, the radiation part of the boiler was not modelled
with the use of the boiler module from the GateCycle library. The difference was that, in this case, there
was also the electric power from the hard coal mill and the power of the lignite crusher, while that of
the nitrogen fan was zero.

The fuel used to feed the combustion chamber of the steam boiler was hard coal with alower heating
value of 24,078 k]/kg and the following mass composition: carbon (c)—61.25%; hydrogen (h)—3.9%;
sulfur (s)—1.1%; nitrogen (n)—0.93%; oxygen (0)—6.5%; ash (p)—9%; and water (w)—17.32%. It was
assumed, as in variant V1, that the oxygen content in the oxidizer was 30% and the excess oxidant ratio
was 1.2. Other assumptions for the computation of the pulverized-fuel boiler model were the same as
in the V1 variant (Table 3).
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The authors in the literature [61-64] analyzed low-temperature separation membranes made of
the following four materials: polyethylene oxide (PPO), Matrimid, phenolic resin, and carbon/ZSM5.
Based on these analyses, phenolic resin was chosen as the best of the materials that were considered. It is
characterized by an oxygen permeation coefficient of 3.1119 (m3y\/m?h bar) and a nitrogen permeation
coefficient of 0.2922 (m3y/m?h bar). The O,/N, selectivity coefficient («) calculated with the use of
both quantities was 10.65. The main assumptions for the computations of the hybrid ASU model are
presented in Table 4 [61-64]. The remaining assumptions were the same as in the V1 variant (Table 2).

Table 4. Assumptions for the hybrid ASU (variant V2).

Quantity, Unit Value
Isentropic/mechanical efficiency of the air compressor sections, % 90/98
Air pressure at the inlet to the membrane module, bar 3
Permeate pressure at the outlet of the membrane module, bar 0.4
Oxygen purity in the retentate at the outlet of the membrane module, % 50
Pressure at the inlet to the cryogenic installation, bar 6.1
Nitrogen/oxygen pressures at the outlet of the ASU, bar 1.9;1.1
Pressure at the outlet of the throttle valve TV1, bar 59
Pressure at the outlet of the EXP, bar 1.58
Pressure at the outlet of the throttle valve TV2, bar 1.65
Pressure at the outlet of the throttle valve TV3, bar 1.30
Pressure in the HPC, bar 5.7
Pressure in the LPC, bar 1.3

2.3. Variant V3a—Steam Boiler and Description of the ASU

The V3a variant oxy-type power plant is equipped with a lignite-fired, fluidized-bed boiler and
air separation unit with a three-end type, high-temperature membrane [65,66]. The scheme of these
two integrated installations is shown in Figure 6.
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Figure 6. Scheme of a fluidized-bed boiler integrated with an ASU equipped with a three-end type
HTM (OC-oxygen cooler; RAH-regenerative air heater; ROH-regenerative oxygen heater).

In this example, an ASU using high-temperature membranes for separation was implemented.
This membrane is made of a material that is an ionic oxygen conductor (perovskite materials). The unit
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flow rate of the oxygen permeating through the membrane depends on the partial pressure of the
oxygen on the fed side of the membrane ((po2)g), the partial pressure of the oxygen on the permeate side
of the membrane ((pop)p), the membrane coefficient (C1), and the unit surface area of the membrane
(dAnmem) as given by Equation (1) [74].

(Po2)e
(Po2)p

The membrane coefficient C; (Equation (2)) depends on the membrane’s operational temperature
(TnmEM), the membrane’s thickness (d), and the properties of the membrane material (coefficient of ionic
conductivity of the membrane material—F (S/m)) [74].

= (AM) @)

16-F2-d
Therefore, in order to separate the oxygen, it is necessary to preheat the air to a temperature
in the range of 700-900 (950) °C. Therefore, a regenerative air heater (RAH) and air heater (AH)
integrated into the boiler’s structure were used. In addition, it was necessary to increase the pressure
difference on both sides of the membrane; thus, an air compressor (AC) and a vacuum pump (VP)
were incorporated into the structure of the ASU. The preheated and compressed air was then fed
to the membrane module. Then, after the oxygen was separated, the remaining gas flowed out of
the membrane module as retentate. The amount of oxygen that permeated through the membrane
defines the so-called oxygen recovery rate (variants V3a and V3b). This quantity was changed during
the computation process [65,66] and it was defined as the ratio of the mass flow rate of the oxygen
permeating through the membrane ((moz) ) to the mass flow rate of the oxygen in the air ((Thoz)
according to Equation (3).

PER AIR)

Rop = m 3)

(moz)AIR

The oxygen that permeated through the membrane was discharged from the membrane module
as permeate. The membrane module used in this case was a three-end type of membrane module.
The retentate from the membrane module flowed through the first part of the expander (EXP1), then
the RAH heat exchanger and then the second part of the expander (EXP2). However, the permeate
flowed through the second section of the economizer (ECO?2), the regenerative oxygen heater (ROH)
and the oxygen cooler (OC) in order to decrease its temperature to 20 °C before it was introduced into
the vacuum pump (VP). Next, the oxygen was heated in the OH heat exchanger before being mixed
with the recirculated flue gasses (which were preheated in the recirculated flue gas heater—FGH).
The numerator of this equation consisted of the electric power of the air compressor (3, Nac), both parts
of the expanders EXP1 and EXP2 (} Ngxp) and the vacuum pump (Nyp). The main assumptions for the
computation of the variant V3a ASU model are presented in Table 5. The more detailed assumptions
are described in References [65,66].

In this case, similar to variant V1, the lignite-fired, fluidized-bed boiler was used. In both cases,
the same fuel (lignite) was chosen. The difference was that in this variant an additional air heater
(AH) was added into the boiler’s structure between the RSH2 and LSH1 heat exchangers and there
was no high-purity oxygen heater (that was parallel to the nitrogen heater in variant V1). In addition,
there was no high-purity oxygen fan in this case. The lignite dryer was used in this case (as in variant
V1), where the gas was mainly composed of nitrogen preheated in the nitrogen heater (NH), this
nitrogen was used as a drying medium. The assumptions were almost identical; the difference was
that the flow rate of the dried fuel was determined by the possibility of drying the lignite to achieve
a moisture content of 10%. The assumptions for the computation of this type of boiler model were
identical to those presented in Table 2. A more detailed V3a variant description has been presented in
the literature [65,66].
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Table 5. Assumptions for the ASU equipped with a three-end type HTM (variant V3a).

Quantity, Unit Value
Oxygen purity in the permeate, % 100
Membrane operating temperature, °C 850
Pressure on the fed side of the membrane module, kPa 1400
Pressure on the permeate side of the membrane module, kPa 42.5
Isentropic efficiency of the air compressor (AC), % 88
Isentropic efficiency of the expander parts (EXP1 and EXP2), % 90
Isentropic efficiency of the vacuum pump (VP), % 88
Temperature difference on the hot side of the RAH, K 40
Temperature difference on the hot side of the ROH, K 40

2.4. Variant V3b—Steam Boiler and Description of the ASU

The variant V3b of the oxy-type power plant was equipped with a hard-coal-fired, pulverized-fuel
boiler and air separation unit that used a four-end type, high-temperature membrane for air separation.
The scheme of both installations is presented in Figure 7.

CC UNIT

[ HTM FOUR-END
ASU

MEM

STEAM TURBINE UNIT
(STU)

Retemtate

Figure 7. Scheme of the pulverized-fuel boiler integrated with an ASU equipped with a four-end type
HTM [67,68].

In this variant, the high-temperature membranes were used as in variant V3a. The difference was
that the four-end type membrane module was used here instead of the three-end type. The permeate
side of the membrane was fed by the recirculated flue gas (with a low oxygen concentration), so the
partial pressure of the oxygen on this side of the membrane was low; in this solution, there was no
need for a vacuum pump. In addition, two recirculated flue gas heaters were used: the first was fed
with oxidant (FGH1); and the second one (FGH2) was located in the steam boiler; the expander was
not divided into two parts. It was assumed that the temperature difference on the hot side of the FGH1
heat exchanger was 50 K. During the computation, the oxygen recovery rate (as in variant V3a) was
changed [3,69]. The remaining assumptions for the computation of variant V3b ASU were the same as
those in References [67,68].

A hard-coal-fired, pulverized-fuel boiler similar to the variant V2 boiler was used in the variant
V3b of the oxy-type power plant. In both cases, the same fuel (hard coal) was chosen. The difference
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was that in this case the air heater (AH) and the recirculated flue gas heater (FGH2) were added to the
boiler’s structure. This decision led to the need for the evaporator to be split into two parts, because of
the high-temperature demand for air and flue gas at the inlet to the membrane module in the ASU.
Additionally, the high-purity oxygen and nitrogen heaters were removed from the convection part of
the boiler. The assumptions for the computation of this type of boiler model were identical to those
presented in Table 2. More detailed V3b variant descriptions are presented in the literature [3,67-69].

3. Thermodynamic and Economic Analysis Methodology

One of the most important power plant work indicators is the net efficiency of the electricity
generation (1¢ ). For all power plant types, the efficiency (Equation (4)) depends on the gross power
of the power plant (Ngj ), the sum of the auxiliary power of the power plant (3. Nayx), the fuel flow
rate (mg), and the lower heating value (LHV).

_ Neig — X Naux @
TN = L LHY
This efficiency, in the case of a thermal power plant (Equation (5)), can be described as a function
of the steam turbine unit’s efficiency (1sty) and the boiler’s thermal efficiency (1p).

Y NAUX) 5)

= el =
MelN = 7STU'TIB ( NaG

In the steam turbine unit’s efficiency (Equation (6)) and the boiler’s thermal efficiency (Equation
(7)) equations, the heat flux supplied to the steam turbine unit (Qgsry ) can be implemented.

Nei,G
NSty = — (6)
QstuF
QSTU,F
= ——— @)
mFL-LH \%

After introducing the auxiliary power rate of a power plant (Equation (8)), which is the sum of the
auxiliary power rates of the air separation unit (6asy), the CO; capture and compression unit (6¢cc)
and the steam turbine unit (6s7y), the e N can be calculated according to the Equation (9).

N
6= % = 0asu + 0cc + 0B + dstU 8)
el,G
Ne,N = Nstu-ne-(1-0) )

In the case of oxy-type power plants, through the use of an air separation unit and a CO; capture
and compression unit, waste heat sources appear in the power generation systems that can be used to
increase the efficiency of power generation. For the assumptions that the heat fed to the steam turbine
unit is constant but the electric power of the steam turbine unit is increased by AN, the auxiliary
power of the power plant is lowered by ANsyx and the boiler’s thermal efficiency is increased by Ang,
then the net efficiency of electricity generation that it will be increased by Ane N [3,69], according to
the Equation (10).

AN, NelG
AN = —2 1 + —2-Ang {1

Qstu F Qstur

N AN
Y AUX)+ AUX (10)

Nec Qstur

The auxiliary power rate of the steam turbine unit (Equation (11)) is the sum of the powers of the
condensate pump (Ncop), the main water pump (Npyp), and the bleed condensate pumps BP1 and BP2
(X, Npp), divided by the gross electrical power of the power plant (N G).
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_ Ncop +Nwp + ¥, Nep
Nel,G

dsTU (11)

The auxiliary power rate of the CO; capture and compression unit (Equation (12)) is a sum of the
powers of the three sections of the flue gas compressor (} Nrc) and the CO, pump (Ncpp), divided by
the gross electrical power of the power plant (Ng g).

_ Ncop + Nwp + Y. Nep
Nel,G

dcc (12)

The auxiliary power rate of the air separation unit (Equation (13)) depends on the air compressor’s
electrical power (), Nac), the expander’s electrical power (3, Ngxp), the air fan’s electrical power (Nap),
and the vacuum pump'’s electrical power (Nyp).

_ Nasu _ Y.Nac =X Nexp + Nar + Nvp
Nel,G Nel,g

0AsU (13)

The auxiliary power rate of the steam boiler (Equation (14)) depends on the sum of the electrical
power of the fans present in the boiler’s structure (3 Np), the electrical power required to drive fuel
preparation devices (NgLp) (such as: the lignite crusher and the hard coal mill) and the electrical power
of the electrostatic precipitator (Ngp).

_ L Ne+ Nprp + Nep

O
Nel,g

(14)

The net present value (NPV) was used as the main indicator of economic effectiveness. According
to Equation (15), this quantity depends on the annual net cash flow (CF;) and discount rate (r). These
cash flows are determined for individual years of construction and the operation period, discounted
and finally summed together [68,69,75]:

t=
NPV = CFe t
= (1+7)

n

(15)

For the assumption that the net present value is zero (NPV = 0), the break-even price of electricity
(ke®R) is determined. Therefore, when the actual price of electricity is higher than the break-even
price of electricity (ko > ko©R), then the analyzed power plant will be economically profitable
(NPV > 0) [68,69,75].

The annual net cash flow (Equation (16)) depends on the total investment cost of the power plant
(Jrp), the revenue from the sale of electricity (S), the operating cost (Kop), income tax (Pr), amortization
costs (Ka), and the liquidation value (L):

CFe = [~Jpp + S = (Kop + Prr) + Ka + L] (16)

The operating costs (Equation (17)) are the sum of the costs of: repairs (K;), amortization (Kp),
insurance (Kjng), maintenance (Kn,), fuel (Kg,), CO; emissions (Kcop), and exploitation (Kex).
Kop = Ky + Ka + Kins + Km + KgL + Kcoz + Kex (17)

In the case of the economic analyses that are presented in this paper, the revenue from the sale of
electricity (Equation (18)) is defined as the product of the annual operational time of the power plant
(7) of 7500 h, the net electrical power of the power plant (Ng n) and the price of electricity (kep).

S= T'Nel,N'kel (18)
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For the assumption that NPV = 0 and after the substitution of Equations (17) and (18) into Equation
(16), the dependence on the break-even price of electricity can be obtained, presented as Equation (19).

t=n []PP+ (Kop+Prr) _KA_L]
=0 (1+1)"

GR _
kel -

(19)

t=n [T'Nel/N]
Li=o (1+r)

The break-even price of electricity can be divided into components (Equation (20)) dependent on

the total investment cost ((kgR)]), the fuel cost ((kgR)FL), and the non-fuel cost ((keGlR)NF).

k' = (k) (ke (ke 20)

el

The non-fuel cost is defined by Equation (21).

Knrr, = Ky + Kins + K + Kpr, + Kcop + Prr — L (21)

The repair cost is defined as a part of the total investment cost and the exact value of this quantity
is determined by the indicator of the repair cost. This indicator is systematically increased during the
30 years of operation of the analyzed power plant from 0.5% to 3.5%. The amortization and insurance
costs are determined similarly, with the use of an average amortization rate (5%) and an indicator of the
insurance cost (0.2%). To determine the maintenance cost, it was assumed that the employment rate was
0.4 persons/MWg;oss and the annual cost of employment was 14,300 EUR. The fuel and CO; emission
costs were determined with the use of the unit price of fuel (16 EUR/Mg for lignite and 50 EUR/Mg for
hard coal—determined from Reference [76]) and the unit CO; emission cost (21.8 EUR/Mgcop [69]). It
was assumed that the unit exploitation cost was 4.2 EUR/MWhgyss. Income tax was determined on the
assumption that the income tax rate was 19%—the Polish income tax rate. The liquidation value was
assumed to be 20% of the total investment cost of the power plant.

For the economic analysis, it was assumed that the total investment cost of the power plant was
divided over five years. Overall, 10% of the total investment cost was used during the first year, 30%
during the second year, 25% during the third year, 20% during the fourth year, and the remaining 15%
during the fifth year. Eighty percent of this investment cost was covered by a commercial loan with a
6% per year rate. The repayment period of the loan was 15 years.

The last quantity needed for economic analysis was the total investment cost of the oxy-type power
plant. This investment cost was divided into four parts: the boiler and steam turbine unit investment
cost, the CO; capture and compression unit investment cost, the air separation unit investment cost,
and the increase in the STU investment cost associated with the replacement of the regenerative
feedwater heaters.

The boiler and steam turbine unit investment cost was constant and for the variants V1 and
V3a oxy-type power plants and the variant V4a of the reference power plant it was 623 m EUR.
For the remaining oxy-type and reference power plants its value was 582 m EUR. Those costs were
estimated based on the results from Reference [77]. The modifications to the boiler’s construction
(described in Sections 2.1-2.4) were considered during the determination of the ASU’s investment
cost. The methodology presented in the literature [69] was used to determine the increase in the
STU’s investment cost associated with the replacement of the regenerative feedwater heaters (AJsty).
The methodology takes into consideration relative increase of the steam cycle power output and
additional cost of new gas-water heat exchangers.

The CC unit’s investment cost was determined based on the purchase cost of the flue gas
compressor. This cost was then multiplied by an indicator of the CC unit’s investment cost which was
equal to 10. This indicator value was estimated based on the results of the economic analysis for “Case
1” presented in the literature [77]. The exact method for the estimation of the CC unit’s investment cost
is presented in Reference [69].
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The determination of the ASU’s investment cost of the variant V1 of the oxy-type power plant
was primarily based on the power plant labeled “Case 3” described in the literature [77]. The ASU’s
investment cost of variant V2 was determined based on the same data. The difference was that in this
case the purchasing cost of the membrane and vacuum pump was included. The ASU’s investment
costs of variants V3a and V3b were based on the estimation equations for the purchasing costs of the
air compressor, expander, membrane, and vacuum pump. The indicator of the ASU’s investment cost
was determined according to the analysis presented in the literature [77] (for the power plant labeled
“Case 1”). The entire methodology is presented in Reference [69].

4. Thermodynamic Analysis Results for the Oxy-Type Power Plant Variants

The net efficiency of electricity generation (Equation (5)) is one of the most important
thermodynamic indicators. The steam turbine unit’s efficiency needed for calculation of the efficiency
(Equation (9)) for the basic calculations (without waste heat recovery analysis) for all the analyzed
examples of the oxy-type power plant, was constant (51.95%).

The integration of the steam boiler with the air separation unit in variants V1 and V2 of the
oxy-type power plant involved the introduction of flue gas recirculation and oxygen uptake from the
ASU. As a result, the change of the ASU’s operating parameters did not change the flow rate of the
fuel supplied to the boiler’s combustion chamber. Furthermore, the heat flux supplied to the steam
turbine unit was constant, therefore the electrical power of the steam turbine was constant as well.
Finally, according to Equation (7) in both variants (i.e., V1 and V2), the thermal efficiency of the boiler
was constant. For the variants V3a and V3b of the oxy-type power plant, the heat flux supplied to the
steam turbine was also constant. However, the introduction of an air heater (and of a recirculated flue
gas heater in variant V3b into the boiler’s structure caused an increase in the fuel flow rate supplied
to the combustion chamber. The amount of extra fuel depended on the air temperature and the flow
rate at the inlet to the boiler’s air heater. This temperature mainly depended on the air compressor’s
pressure rate and the flow rate mainly depended on the oxygen recovery rate in the ASU. Additionally,
the heat transferred in the additional heat exchangers was not included in the heat flux supplied to the
steam turbine unit (Equation (6)). In conclusion, in both cases the thermal efficiency of the boiler was
related to the ASU’s operating parameter (Rpy) and, therefore, to the auxiliary power rate of the ASU.
Thus, both quantities (np and 65sy) must be considered together.

The auxiliary power rate of the steam turbine was constant for all the analyzed variants (3.4%).
The boiler’s auxiliary power rate for variants V3a and V3b depended on the ASU’s oxygen recovery
rate, for the same reason as in case of the boiler’s thermal efficiency. Additionally, for the same reason
the flue gas flow rate depended on Rp, (because of the fuel flow rate change). Therefore, the auxiliary
power rate of the CC unit also depended on the ASU’s oxygen recovery rate. Both quantities (6g and
0cc) were constant for variants V1 and V2 of the oxy-type power plants. The air separation unit’s
auxiliary power rate for all the analyzed examples of the oxy-type power plants depended on the
ASU’s operating parameters.

According to the dependencies previously described, the results of the basic thermodynamic
analysis of the oxy-type power plant variants were divided into two parts. The first part concerning
the results of variants V1 and V2 is presented in Section 4.1. The second part concerning the remaining
cases is presented in Section 4.2.

The waste heat recovery methods presented in this paper led to a change in both the thermal
efficiency of the boiler (lignite drying) and the net electrical power of the power plant (replacement of
the feedwater heaters supplied with steam). As a result, the net efficiency of the electricity generation
will change. The results of the waste heat recovery analysis have been presented in Section 4.3.
The results of the thermodynamic analyses for all investigated variants of the oxy-type power plants
(for the highest determined net efficiency of the power plant) have been summarized in Section 4.4.
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4.1. Thermodynamic Analysis of Variants V1 and V2 of the Oxy-Type Power Plant

Preliminary thermodynamic analyses for variant V1 of an oxy-type power plant were performed
for the pressure at the outlets of the air compressors in the ASU (point P1 in Figure 4), which was
equal to 6 bar. The results of this analysis are presented in Table 6. The auxiliary power rate of the
ASU (~15.7%) and the CC unit (~9.6%) presented the highest value of all the other auxiliary power
rates. Both these quantities (0asy and 6cc) were several times greater than the remaining two auxiliary
power rates (6 and 0gty); therefore, they had the greatest impact on the net efficiency value of the
power plant. This efficiency for variant V1 was 12.3 p.p. lower than the analogous efficiency for the
reference power plant (variant V4a).

Table 6. Thermodynamic analysis results (variants V1 and V2).

) . Variants

Quantity, Unit Vi V2
Assumptions
Air compressor pressure ratio in the ASU, - 6.0 6.0
Vacuum pump pressure ratio in the ASU, - - 22
Oxygen recovery rate in the ASU, % 99.0 72.3
Purity of the oxygen produced in the ASU, % 95 95
Results
Auxiliary power rate of the ASU, % 15.73 12.28
Auxiliary power rate of the boiler, % 3.02 2.04
Auxiliary power rate of the CC unit, % 9.60 8.41
Auxiliary power rate of the power plant, % 31.76 26.12
Thermal efficiency of the boiler, % 92.00 94.16
Gross efficiency of electricity generation, % 47.79 48.92
Net efficiency of electricity generation, % 32.61 36.14

A similar preliminary thermodynamic analysis was performed for the variant V2 oxy-type power
plant. As in the previous example (variant V1), the highest value amongst the auxiliary power rates
was seen in Hagy and Occ. The net efficiency of the power plant was ~9.8 p.p. lower than the analogous
efficiency for the reference power plant (variant V4b). So, it can be concluded that the implementation
of a membrane installation into the structure of the cryogenic air separation unit is thermodynamically
viable because the ASU’s auxiliary power rate decreased.

The further thermodynamic analysis of the V1 variant of the oxy-type power plant focused
primarily on sensitive analysis of the effect of changes in the most important operating parameters of
the cryogenic air separation unit on the auxiliary power rate of the ASU (0asy). This was due to the
fact that almost half of the auxiliary power rate of the power plant was the ASU’s auxiliary power
rate [42,45,59,60,78].

In Figure 8, the auxiliary power rate of the ASU and the oxygen recovery rate are presented as a
function of the pressure (pac out) at the outlet of the air compressor in the ASU (point P1 in Figure 4).
The increase in the pressure resulted in an increase of a5y and, at the same time, an increase of Rpp
(which reached the maximum value for pac,out = 5.5 bar). The auxiliary power rate of the ASU, as in
the analysis presented by Fu et al. [78], had already decreased (by approximately 20%) as a result of the
implementation of the self-heat recuperation technology. Additionally, the net efficiency as a function
of the pressure (pacout) at the outlet of the air compressor in the ASU is presented in Figure 8. This
efficiency decreased with an increase in the pressure.

Further thermodynamic analysis of the V2 variant of the oxy-type power plant focused primarily
on sensitive analysis of the effect of change in the operating parameters of the membrane part of the
(hybrid) air separation unit on the auxiliary power rate of the ASU (0asy). Mainly, the influence of the
separation membrane’s surface area and the permeate pressure (point P1 in Figure 5) on the value of
Oasy were analyzed. In Figure 9, the auxiliary power rate as a function of the separation membrane’s
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surface and the permeate pressure is presented. The results were based on the analyses presented
in References [61,62,64]. The permeate pressure and membrane’s surface area should be optimized
together with the aim of minimizing the auxiliary power rate of the ASU. In this case of a permeate
pressure of ~0.45 bar and a membrane surface of ~1800 m?, 555y had the lowest value (~12.28%).
According to the results presented in Figures 8 and 9, the cryogenic air separation unit’s (variant V1)
auxiliary power rate was significantly higher than that of the hybrid air separation unit (variant V2).
However, in the V1 variant, lignite was used as fuel in the oxy-type power plant, which significantly
increased the amount of oxygen needed for the fuel combustion process.
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Figure 8. Variant V1 power plant net efficiency, auxiliary power rate of the ASU and the oxygen
recovery rate as a function of the air compressor’s outlet pressure.
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Figure 9. Variant V2 ASU auxiliary power as a function of permeate pressure and the membrane’s
surface area.

An analysis was performed on the possibility of a further decrease in 04sy by decreasing the
temperature at the outlet of the intercoolers (AIC1, AIC2, AIC3, and AIC4 in Figure 5), decreasing the
pressure increase in the air fan (AF in Figure 5—used to overcome the pressure loss in the installation)
and increasing the O,/N,; membrane selectivity coefficient (). The results of this analysis have been
presented in Figure 10, curve A represents the results for the assumption that the increase in pressure
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in the AF was 0.05 bar and the temperature at the outlet of the intercoolers was 30 °C (the same as
for the results presented in Figure 9); while curve B represents the results for the assumption that the
increase in the pressure in the AF was reduced to 0.02 bar and the temperature at the outlet of the
intercoolers decreased to 20 °C. Decreasing the pressure difference and the temperatures could reduce
the auxiliary power rate of the ASU by approximately 0.9 p.p. (lower a values) and 1.3 p.p. (higher «
values). Increasing the O,/N, membrane selectivity coefficient reduced 655y by 1.5 p.p. The lowest
value of the auxiliary power rate of the ASU, presented in Figure 10, was 9.8%.
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Figure 10. Variant V2 power plant ASU auxiliary power rate as a function of the O,/N, membrane

selectivity coefficient.

The results of decreasing the temperature at the outlet of the intercoolers, decreasing the pressure
increase in the air fan, and increasing the O,/N, membrane selectivity coefficient (@) on the net efficiency
of electricity generation are presented in Figure 11 (Curves A and B represent the same assumptions as
in Figure 10). The results indicated that there was a great possibility to increase the net efficiency by up
to 1.2 p.p. (to a maximal value of 37.3%).
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Figure 11. Variant V2 power plant net efficiency as a function of the O,/N, membrane selectivity
coefficient for Variant V2.
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The remaining quantities necessary to determine the net efficiency of electricity generation have
been presented in Table 6. For the V1 variant of the oxy-type power plant, the decrease in the net
efficiency relative to the reference power plant was reduced to ~11.2 p.p. (by ~1.1 p.p.) by decreasing
the pressure at the outlet of the air compressor (to 4.6 bar). For variant V2, the same efficiency
difference was reduced to 8.6 p.p. (by ~1.2 p.p.) by decreasing the temperature at the outlet of
the intercoolers, decreasing the pressure increase in the air fan and increasing the O,/N,; membrane
selectivity coefficient («).

4.2. Thermodynamic Analysis of Variants V3a and V3b of the Oxy-Type Power Plants

As described previously, the ASU operating parameters for the variants V3a and V3b oxy-type
power plants have a huge impact on the auxiliary power rate of the ASU, the boiler’s thermal efficiency,
the auxiliary power rate of the boiler, and the CC unit. Thus, analysis of the influence of these
parameters on the ASU’s auxiliary power rate without a simultaneous analysis of the influence on the
boiler’s thermal efficiency is pointless. The auxiliary power rates of the boiler and the CC unit as a
function of the oxygen recovery rate for variants V3a and V3b are presented in Figure 12.
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Figure 12. Auxiliary power rates of the boiler and the CC units as a function of the oxygen recovery rate.

For variant V3a, the (theoretical) maximal possible value of the oxygen recovery rate was ~88.5%,
due to the assumed value of the air compressor’s pressure ratio (13.82) and the structure of the ASU.
For variant V3b and for the same reason (air compressor’s pressure ratio—15; four-end membrane
module), the maximal oxygen recovery rate was ~99%. For both cases, the auxiliary powers of the
boiler and the CC units decreased as the Ry increased. The first of the mentioned auxiliary power
rates (6p) for Rop < ~54% was slightly higher for variant V3a (dominant influence of the fuel flow rate),
while for Rpy > ~54% this quantity was considerably higher for variant V3b (dominant influence of the
hard coal mill’s and the lignite crusher’s energy consumption). The CC unit’s auxiliary power rate in
the whole analyzed range Ro, was considerably lower for variant V3b (lower flue gas flow rate).

The influence of the oxygen recovery rate in the ASU on the ASU’s auxiliary power rate is
presented in Figure 13 for variants V3a and V3b. This auxiliary power rate increased with the increase
in the oxygen recovery rate and this quantity had a negative value for the whole analyzed range of
Rop. This means that the ASU did not use electricity to drive the equipment, but instead the additional
electricity was generated in such installations, mainly because the power of the expander was higher
than the power required by the air compressor. However, it should be remembered that the heat flux
from the steam boiler was supplied to the ASU for this purpose. According to Figure 13, the value of 6p
for variant V3a was much higher. This was because, in this case, an additional regenerative air heater
(RAH) was incorporated into the system, which significantly reduced the retentate’s expander power.
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Figure 13. The ASU'’s auxiliary power rate as a function of the oxygen recovery rate.

The auxiliary power rate of the V3a and V3b variants oxy-type power plants as a function of the
oxygen recovery rate is presented in Figure 14. This quantity increased as the oxygen recovery rate
increased for both cases, as is the case of the ASU’s auxiliary power rate (Figure 13). As previously
described, 0p and 6cc decreased with the increase in Rop (Figure 12). Thus, it could be concluded that
the auxiliary power rate of the power plant was influenced most by the ASU’s auxiliary power rate.
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Figure 14. Oxy-type power plant auxiliary power rate as a function of the oxygen recovery rate.

The thermal boiler’s efficiency as a function of the ASU’s oxygen recovery rate is presented in
Figure 15. This efficiency increased with the increase in Rp; for both cases. Initially, it was higher for
variant V3a until Rpp reached a value of ~85%, and then the values for this quantity for both cases
were similar.
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Figure 15. Thermal boiler efficiency as a function of the oxygen recovery rate.

It is possible to determine the net efficiency of the electricity generation when the thermal efficiency
of the steam turbine unit (51.95%), the boiler’s thermal efficiency (Figure 15), and the auxiliary power
rate of the power plant (Figure 14) are known. 1N as a function of the oxygen recovery rate in
the ASU for variants V3a and V3b is shown in Figure 16. This efficiency for both cases increased
with the increase in the ASU’s oxygen recovery rate. Such dependences can also be observed in the
literature [3,65-67,69]. Much higher values of the net efficiencies were achieved by the variant V3b of
the oxy-type power plant. This was primarily because hard coal was used as the fuel in this variant.
For the examples analyzed in this paper, the maximum value of 7¢) y occurred for the following oxygen
recovery rates: ~88.5% (variant V3a) and ~99% (variant V3b).
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Figure 16. Net efficiency of electricity generation as a function of the oxygen recovery rate.

The thermodynamic indicators for the V3a and V3b variants of the oxy-type power plants for
the ASU’s operation parameters characterized by the highest net efficiency of the power plant have
been collated in Table 7. For variant V3b, this efficiency was 7.24 p.p. lower than that for the reference
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power plant (variant V4b). This efficiency decrease for variant V3a was significantly higher (9.52 p.p.
relative to the variant V4a reference power plant).

Table 7. Thermodynamic analysis results (variants V3a and V3b).

) ) Variant

Quantity, Unit V3a Vb
Assumptions
Air compressor pressure ratio in the ASU, - 13.82 15
Vacuum pump pressure ratio in the ASU, - 2.45 -
Oxygen recovery rate in the ASU, % 88.5 99.0
Purity of the oxygen produced in the ASU, % 100 -
Results
Auxiliary power rate of the ASU, % -1.71 -5.23
Auxiliary power rate of the boiler, % 2.76 2.86
Auxiliary power rate of the CC unit, % 10.89 9.14
Auxiliary power rate of the power plant, % 15.34 10.17
Thermal efficiency of the boiler, % 80.50 82.85
Gross efficiency of electricity generation, % 41.82 43.04
Net efficiency of electricity generation, % 35.41 38.66

4.3. Analysis of Waste Heat Recovery

The next step for all the oxy-type power plant variants was an analysis of the use of waste heat to
improve the net efficiency of the power plant. For variant V1, the first method was the introduction
of a lignite dryer [79-81]. The second method (for this variant) was to use the waste heat to heat the
feedwater in the steam turbine unit, thus replacing the feedwater heaters fed with steam (for example,
with heat exchangers fed with flue gas). The gas left after the separation of the oxygen from the air
(mostly consisting of nitrogen) was used in the first method as the drying medium. This gas was
preheated in an additional nitrogen heater positioned parallel to the OH heat exchanger in the boiler
(Figure 4). During the analysis of the lignite dryer, the influence of such parameters as the drying
medium’s flow rate on the boiler’s thermal efficiency was identified. The results of this analysis are
presented in Figure 17 on the assumption that the temperature decrease in the drying medium in the
lignite dryer was 60 K. Increasing the drying medium’s flow rate caused a significant increase in the
boiler’s thermal efficiency. In this variant, it was only possible to increase 1 up to ~92.8% (if the whole
nitrogen flow rate from the ASU was used, about 386 kg/s).
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Figure 17. Thermal efficiency of the fluidized-bed boiler as a function of the drying medium’s flow rate
in a lignite dryer (Variant V1 of oxy-type power plant).
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The effect on 11 v of increasing the drying medium'’s flow rate and decreasing the pressure of the
air at the air compressor’s outlet (point P1 in Figure 4) is presented in Figure 18 with a curve labeled
“A”. The drying medium’s flow rate increased up to its maximum possible value (~386 kg/s) during
the computation. The analysis showed that there was a significant potential for improving the net
efficiency of the power plant. This efficiency increased by ~1.5 p.p. (including a 0.4 p.p. increase
associated with the lignite drying) to the value of ~34.1%.
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Figure 18. Net efficiency of electricity generation as a function of the air compressor’s outlet pressure
and the drying medium’s flow rate (Variant V1 of the oxy-type power plant).

In the second method of waste heat recovery, the heat from the ASU’s air intercoolers (AIC1, AIC2,
AIC3, and AIC4 in Figure 4) and the CC unit’s flue gas intercoolers (FIC1, FIC2, and FIC3 in Figure 3)
was used to heat the feedwater in the steam turbine unit. The main assumptions during this analysis
were the invariability of the temperatures at the inlets and outlets of the replaced regenerative feedwater
heaters presented in Figure 2. A similar approach has been described in the literature [42,59,60,62,67].
This thermal integration of the ASU and CC unit with a steam turbine unit enabled the removal of two
steam bleeds (which supplied the WH1 and WH2 heat exchangers presented in Figure 2), resulting
in a 7.17 MW increase in the gross electric power of the power plant. The net efficiency of electricity
generation as a function of the air compressor’s outlet pressure and the drying medium’s flow rate
for the variant V1 of the oxy-type power plants with replaced WH1 and WH2 heat exchangers is
presented in Figure 18 (curve “B”). In the whole range of pac,out and 1y, nel,N increased by ~0.6 p.p.
The maximal value of this efficiency was 34.7%.

Drying the hard coal before the combustion process resulted in a much lower improvement in
efficiency than in the case of drying the lignite. Thus, in the variant V2 of the oxy-type power plants
the waste heat was used only for the feedwater heating in the steam turbine unit. For this purpose,
the thermal integration of the ASU and CC unit with the steam turbine unit was carried out. As in
the previous variant (V1), the heat from the air intercoolers and the flue gas intercoolers was used
to replace the feedwater heaters. This thermal integration enabled the removal of two steam bleeds
(which supplied the WH1 and WH2 heat exchangers), resulting in a 7.17 MW increase in the gross
electric power of the power plant (the same as in variant V1). The net efficiency of this type of oxy-type
power plant reached 36.8%. The efficiency presented in Figure 11 increased by 0.6 p.p. (after the
replacement of the WH1 and WH2 heat exchangers).
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For variant V3a, as in previous cases, analyses were conducted for the use of waste heat for drying
the lignite (as in variant V1) and replacement of the regenerative feedwater heaters within the steam
turbine unit (as in variants V1 and V2). The results of these analyses are presented in Figure 19. Drying
the lignite caused a change in the value of the net efficiency of electricity generation. The maximum
value of this efficiency was measured for an oxygen recovery rate of ~47%. The heat flux from the flue
gas intercoolers (in the CC unit) and the drying medium on outlets of the lignite dryers was used for
the replacement of the regenerative feedwater heaters in the steam turbine unit in this type of oxy-type
power plant. As a result, the amount of heat was sufficient to replace only the first low-pressure
regenerative feedwater heater (WH1) [65,66]. The results of this analysis are presented in Figure 19
with the curve labeled “WHI1 replacement”. Across the whole range of the oxygen recovery rate,
the replacement of the WH1 heat exchanger caused a 0.2 p.p. increase in the net efficiency of the
power plant.
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Figure 19. Net efficiency of electricity generation as a function of the oxygen recovery rate.

For variant V3b, the authors in References [3,69] analyzed the use of waste heat to replace the
regenerative feedwater heaters in the steam turbine unit. This method, unlike the analogous methods
in the previous variants (V1, V2, and V3a), was performed from the assumption that the individual
regenerative feedwater heaters could be replaced either entirely (as before) or partially. This method
used the heat contained in the flue gas on the inlet of the flue gas dryer (FD in Figure 7) and the gas
at the outlet of the expander in the ASU. The influence of the oxygen recovery rate (the amount of
waste heat largely depended on this quantity) on the gross electrical power of the power plant and,
thus, on the gross and net efficiency of the power plant, was analyzed. The results are presented in
Figure 19 with a dashed line. For oxygen recovery rates smaller than or equal to 44.6%, it was possible
to replace all the low- and high-pressure regenerative feedwater heaters. Thus, for this value of Rpp
the net efficiency of the power plant had the maximum value. According to the analysis presented
by Gopan et al. [82], the power plant’s efficiency could be increased by over 6 p.p. with the use
of the staged, pressurized oxy-combustion (SPOC) process (compared to the atmospheric pressure
oxy-combustion technology). The net efficiency of electricity generation across the whole analyzed
range of Rpy provided higher values with the V3b variant of the oxy-type power plant (as in Figure 16).
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4.4. Description of the Reference Power Plant Variants

The reference power plant for the analyses performed on four examples of an oxy-type power
plant consisted of a steam turbine unit and a classic steam boiler (in which air was used as the oxidant).
The following two examples of a reference power plant were considered in this paper:

e  Variant V4a—the reference power plant equipped with a lignite-fired, fluidized-bed boiler;
e  Variant V4b—the reference power plant equipped with a hard-coal-fired, pulverized-fuel boiler.

In both cases, the same steam turbine unit was used as in all the oxy-type power plant variants
(Figure 2). The lignite used in variant V4a as a fuel had the same lower heating value and composition
as in variants V1 and V3a. While in variant V4b, the same fuel (hard coal) was used as in variants V2
and V3b. The boilers in the reference power plant were modeled using stoichiometric calculations. It
was assumed that the fluidized-bed boiler’s thermal efficiency was 93% and the thermal efficiency for
the pulverized-fuel boiler was 95%. The auxiliary power rates for both reference power plants were
7%. The thermodynamic quantities (such as net efficiency of the power plant) that were determined
have been presented in Table 8.

Table 8. The thermodynamic quantities determined for the reference power plants.

o Variants
uantity, Unit

g/ Via Vib
Gross efficiency of electricity generation, % 48.31 49.35
Net efficiency of electricity generation, % 4493 45.90
Efficiency of the steam turbine unit, % 51.95 51.95
Unit CO, emission referred to net electrical power, kg/MWh 839.45 728.89

4.5. Summary of the Thermodynamic Analysis Results

The results of the thermodynamic analyses of the four variants of the oxy-type power plant are
summarized in Table 9. The air compressor pressure ratios were assumed based on the parametric
study of each case of oxy-type power plant [60,61,66,67]. The presented results are for the operational
parameters of the ASU characterized by the maximal values of net efficiency of electricity generation
(presented in Figures 11, 18 and 19).

According to the results presented in Table 9, the largest decrease in the net efficiency of electricity
generation (compared to the reference power plant) occurred in the variant V1 of the oxy-type power
plant (10.2 p.p.). The oxygen separation method implemented in this case was one of the oldest and
most technologically advanced methods of gas separation. The auxiliary power rate of the ASU was
the highest among all the analyzed examples (13.14%), which resulted in the highest auxiliary power
rate for the power plant (28.86%). For variant V2, the net efficiency decrease was 1 p.p. lower than in
variant V1. This was due to the use of oxygen membrane separation before the cryogenic installation
and the use of hard coal as the fuel (the ASU’s auxiliary power rate was ~2.3 p.p. lower and the power
plant’s auxiliary power rate was ~5.5 p.p. lower). However, the use of high-temperature membranes
for oxygen separation resulted in a significant reduction in the net efficiency decrease (compared to
the reference power plant) to 4.86 p.p. (variant V3a) and 4.30 p.p. (variant V3b). The lower value
of this decrease in efficiency in variant V3b was related to a large amount of heat resources used
to replace the regenerative feedwater heaters in the steam turbine unit. In both cases, a significant
decrease in the boiler’s thermal efficiency was observed, but the negative values for the ASU’s auxiliary
power rates resulted in a significant increase in the net efficiency of the power plant. The unit’s CO,
emission (related to the net power of the power plant) decreased from 108.36 kg/MWh (variant V1) to
66.84 kg/MWHh (variant V3b).
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Table 9. Thermodynamic analysis results (waste heat recovery).

Variants

Quantity, Unit Vi V2 V3a V3b
Assumptions
Air compressor pressure ratio in the ASU, - 4.6 6.0 13.82 15.0
Vacuum pump pressure ratio in the ASU, - - 22 2.45 -
Oxygen recovery rate in the ASU, % 97.2 72.3 47.0 44.6
Purity of the oxygen produced in the ASU, % 95 95 100 -
Results
Auxiliary power rate of the STU, % 3.36 3.36 3.39 2.67
Auxiliary power rate of the ASU, % 13.14 9.71 -16.02 —27.37
Auxiliary power rate of the boiler, % 2.96 2.01 3.18 3.28
Auxiliary power rate of the CC unit, % 9.4 8.30 11.12 10.49
Auxiliary power rate of the power plant, % 28.86 23.38 1.66 -10.93
Gross electrical power, MW 607.74 607.74 602.55 723.14
Net electrical power, MW 432.34 465.62 592.53 802.16
Thermal efficiency of the STU, % 52.62 52.62 52.17 62.61
Thermal efficiency of the boiler, % 92.79 94.16 78.11 59.90
Gross efficiency of electricity generation, % 48.83 49.55 40.75 37.50
Net efficiency of electricity generation, % 34.73 37.96 40.07 41.60
Ezc;‘s?es:ez ;h;or‘tsz ffﬁ(;ls:cg ;f electricity generation relative to 10.20 704 486 430
Unit CO; emissions referred to the net electrical power, kg/MWh 108.36 88.83 56.11 66.84

5. Economic Analysis Results

The results of the economic analysis of the four variants of the oxy-type power plant (for the
operational parameters of the ASU presented in Table 9) have been presented in Table 10. During
the economic analysis of the variants of the reference power plant the total investment cost of the
power plant was determined (variant V4a—1021.7 m EUR; variant V4b—954.5 m EUR). Based on these
values, the break-even price of electricity was determined (variant V4a—61.88 EUR/MWh; variant
V4b—61.07 EUR/MWh). Additionally, the avoided emissions cost (Equation (22)) was determined for
all the types of the oxy-type power plant. This quantity depends on the break-even price of electricity

from an oxy-type power plant ((kgR) the break-even price of electricity from the reference power

)s
OXY
plant ((keGIR)REF)’ the unit CO, emissions of the oxy-type power plant ((Ecoa,N)oxy), and the reference
power plant ((Ecoa,N)ggp)-

GR GR
(kel )OXY B (kel )REF

kav = (22)
(ECOZ,N ) REF — (ECOZ,N)OXY

Both break-even prices of electricity in Equation (22) were determined under the assumption that
the CO, emission cost was zero. This break-even price of electricity for the reference power plant was
44.14 EUR/MWh (variant V4a) and 45.66 EUR/MWh (variant V4b).
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Table 10. Economic analysis results.

Variants
Quantity Vi1 V2 V3a V3b

Assumptions
Air compressor pressure ratio in the ASU, - 4.6 6 13.82 15
Vacuum pump pressure ratio in the ASU, - - 22 2.45 -
Oxygen recovery rate in the ASU, % 97.2 72.3 47.0 44.6
Purity of the oxygen produced in the ASU, % 95 95 100 -
Results
ASU'’s investment cost, EUR (m) 163.40 130.59 420.80 480.60
CC unit’s investment cost, EUR (m) 62.85 52.84 7143 80.64
Increase in the STU’s investment cost, EUR (m) 2.19 2.19 0.72 34.57
Total investment cost of the Power plant, EUR (m) 1396.36 1258.91 1830.16 1931.61

Investment cost part 40.69 34.07 38.91 30.34
Break-even price of electricity, EUR/MWh  Fuel part 16.65 19.72 14.43 17.99

Non-fuel part 19.93 17.28 16.47 13.30

Sum 77.27 71.06 69.82 61.64
Increase in kelcR relative to the reference power plant, EUR/MWh 15.39 9.99 7.94 0.57
Break-even price of electricity (for Kcop = 0 EUR), EUR/MWh 74.98 69.18 68.63 60.22
Avoided emissions cost, EUR/Mgcop 42.18 36.75 31.27 22.00

In all considered variants of the oxy-type power plant, the main contribution to value of the
break-even electricity price of 48-55% have the power plant investment cost. The analysis showed
that the greatest difference between the break-even prices of electricity from the oxy-type and the
reference power plants (~15.4 EUR/MWHh) was seen for variant V1. This was mainly due to the lowest
net electrical power of this power plant. This is related to the fact that despite having the second
lowest total investment cost of all the variants of the oxy-type power plant, the investment part of the
break-even price of electricity was the largest for this variant. For the variant V2 of the oxy-type power
plant, the break-even price of electricity was reduced by ~6.2 EUR/MWh. As a result, the increase
in the break-even price relative to the reference power plant was decreased (by ~5.4 EUR/MWh) to
~10 EUR/MWh. This was due to a significant reduction in the ASU’s investment cost (reduction of the
gas flow rate at the inlet to the cryogenic separator), the CC unit’s investment cost (lower flue gas flow
rate), and the improved net efficiency of the power plant. A further reduction of the increase in the
break-even price of electricity, relative to the reference power plant (by ~2 EUR/MWh), was noted for
the variant V3a oxy-type power plant. In this case, the significant increase in the net efficiency of the
power plant had a much greater impact on the break-even price of electricity than the negative impact
of the increase in the total investment cost of the power plant. For similar reasons, the increase in the
break-even price of electricity (relative to reference power plant) was reduced by 0.57 EUR/MWh for
the variant V3b of the oxy-type power plant.

6. Summary

Four variants of the oxy-type power plant differing in ASU type (cryogenic, hybrid, and
high-temperature separation membrane) and boiler type (hard-coal-fired pulverized-fuel and
lignite-fired fluidized-bed) were analyzed in this paper. The variant V1 of the oxy-type power
plant was equipped with the most technologically advanced air separation unit. Lowering the pressure
at the outlet of the air compressor from 6 to 4.6 bar increased the net efficiency by ~1.1 p.p. Further
increase of the net efficiency by ~0.4 p.p. and ~0.6 p.p. was achieved by using waste heat to dry lignite
and by replacing feedwater heaters in the steam cycle, respectively. As a result of all the methods,
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the net efficiency of the variant V1 of the oxy-type power plant was 10.2 p.p. lower than the analogous
efficiency of the reference power plant. According to analyses for similar power plants, this efficiency
decrease was within the range of 8-10.5 p.p. [32,43,45,46,70]. Some sources have indicated that this
decrease was between 9 and 12 p.p. [83,84]. The variant V2 of the oxy-type power plant seems to be
technologically feasible. The simultaneous adjustment of the permeate pressure at the outlet of the
membrane and the membrane’s surface area to minimalize the auxiliary power rate of the ASU is
significant. The net efficiency of electricity generation can be improved to ~37.96% by development
of a membrane with an O,/N; selectivity coefficient («) equal to 40 (efficiency increase of ~0.6 p.p.),
decreasing the pressure loss in the membrane by 2.5 times (efficiency increase of ~0.26 p.p.), decreasing
the temperatures at the outlet of the air intercoolers in the ASU by 10 K (an efficiency increase of
~0.34 p.p.), and using the waste heat in the steam turbine unit (efficiency increase of ~0.6 p.p.).

Air separation units based on high-temperature membrane technology are the most recent oxygen
production technology (of all the technologies that have been presented in this paper). This optimal
oxygen recovery rate was determined for the two analyzed variants (for variant V3a this was 47% and
for variant V3b this was 44.6%). The maximum net efficiency of the variant V3a of the oxy-type power
plant was only 4.86 p.p. lower than the analogous efficiency of the reference power plant. For variant
V3b, this net efficiency was much higher (41.6%). However, the difference between the (variant V4b)
oxy-type and the reference power plant net efficiencies was only slightly lower (4.3 p.p.). According to
the analysis of the oxy-type power plants with similar oxygen production technologies presented in
the literature [47,85,86], the net efficiency decrease was in the range of 6-8 p.p.

An economic analysis of four variants of the oxy-type power plant and two variants of the
reference power plant were also presented in this paper. The analysis for the oxy-type power plant
variants was performed for the operational parameters of the ASU characterized by the maximal value
of the net efficiency of electricity generation. During this analysis, among others, the break-even price
of electricity was calculated. The results showed that despite the assumed high value of the unit CO,
emission cost, the break-even price of electricity for all variants of the oxy-type power plant was higher
than that calculated for the reference power plant variants. The highest increase (15.39 EUR/MWh)
was for the variant V1 of the oxy-type power plant. For variant V2, this difference was reduced by
5.4 EUR/MWh, by implementing the initial separation with use of the low-temperature membranes A
further reduction of the increase in the break-even price of electricity (relative to the reference power
plant) occurred for the variant V3a of the oxy-type power plant (by ~2 EUR/MWHh). In this case, the
significant increase in the net efficiency of the power plant had a much greater impact on the break-even
price of electricity than the negative impact of the increase in the total investment cost of the power
plant. Finally, a similar reason caused the reduction in the increase of the break-even price of electricity
to 0.57 EUR/MWHh (relative to the reference power plant) for the variant V3b of the oxy-type power
plant. During the economic analysis, the avoided emission costs, for all variants of the oxy-type power
plant, were also determined. The value of this quantity varied from 22.0 EUR/Mgco; (variant V3b)
up to 42.2 EUR/Mgco; (variant V1). According to our results, the variant V3b oxy-type power plant
should be cost-effective for unit price values of CO, emissions higher than 22 EUR/Mgcop.
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Nomenclature

A

NPV

AMS OD> T~ ON

Indices
A

AC

AF
AIR
ASU
AUX
AV

BP
CcC
CDP
cor
el

ex
EXP

FC
FP
FL
FLP

surface area;
annual net cash flow;

unit emissions of CO, relative to the net electrical power;
coefficient of the ionic conductivity of the membrane material

investment cost;
unit investment cost;
cost;

unit price of electricity;
break-even price of electricity;

liquidation value;

lower heating value, MJ/kg;

mass flow rate, kg/s;
molar flow rate, kg/s;
power, MW;

net present value;
pressure;

income tax;

heat flux, kJ/s;
discount rate;

oxygen recovery rate;

income from the sale of electricity;

temperature;

compressor pressure ratio;

increase;

auxiliary power rate, %;

efficiency, %;
sum;

annual working time of a power plant; h.

amortization;

air compressor;

air fan;

air;

air separation unit;
auxiliary;

avoided emission;
boiler;

bleed condensate pump;
CO; capture and compression unit;

CO, pump;
condensate pump;
electrical;
exploitation;
expander;

fed, fan;

flue gas compressor;

electrostatic precipitator;

fuel;

fuel preparation devices;
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G gross;

ins insurance;

m maintenance;

MEM membrane;

MP main water pump;

N net;

op operating;

0),44 oxy-type power plant;

P permeate;

PP power plant;

r repair;

REF reference power plant;

STU steam turbine unit;

vp vacuum pump.
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