93 research outputs found

    Differential amplification of rDNA repeats in barley translocation and duplication lines: role of a specific segment

    Get PDF
    Variation in restriction pattern, relative amounts of the two ribosomal DNA (rDNA) repeats, and the overall content of rDNA were compared among twelve segmental duplications and eleven parental translocations involving NOR6 and NOR7 of cultivated barley. Southern blot hybridization revealed two rDNA repeats of 9.9 kb and 9.0 kb. While all duplications snowed dimers for these rDNA repeats, the duplication lines D29 and D47 displayed trimers in addition to a higher proportion of rDNA repeats as dimers. The rDNA of Dl, D29 and D47 showed resistance to Bam HI and Taq I digestion, indicating possible melhylation of cytosine and adenine. Densitometric scans of autoradiographs revealed variations in the relative amounts of the 9.0 kb and 9.9 kb rDNA repeats among different karyotypes. Dot blot hybridizations indicated variation in the overall rDNA content. Comparison of the 9.0/9.9 kb ratios and the percentage of genomic DNA hybridizing to an rDNA clone of barley illustrates differential amplification for the two rDNA repeats. When the segmental composition of these deviating lines were compared, it was evident that the relative position of the segment 12-16 of chromosome 6 determines differential amplification while duplication of the same segment controls the overall rDNA content

    Cell membrane integrity, callose accumulation, and root growth in aluminum-stressed sorghum seedlings

    Get PDF
    Aluminum stress usually reduces plant root growth due to the accumulation of Al in specific zones of the root apex. The objectives of this study were to determine the localization of Al in the root apex of Sorghum bicolor (L.) Moech. and its effects on membrane integrity, callose accumulation, and root growth in selected cultivars. Seedlings were grown in a nutrient solution containing 0, 27, or 39 ÎĽM Al3+ for 24, 48, and 120 h. The Al stress significantly reduced root growth, especially after 48 and 120 h of exposure. A higher Al accumulation, determined by fluorescence microscopy after staining with a Morin dye, occurred in the root extension zone of the sensitive cultivar than in the tolerant cultivar. The membrane damage and callose accumulation were also higher in the sensitive than resistant cultivar. It was concluded that the Al stress significantly reduced root growth through the accumulation of Al in the root extension zone, callose accumulation, and impairment of plasma membrane integrity

    Mapping and linking supply- and demand-side measures in climate-smart agriculture. A review

    Get PDF
    Climate change and food security are two of humanity’s greatest challenges and are highly interlinked. On the one hand, climate change puts pressure on food security. On the other hand, farming significantly contributes to anthropogenic greenhouse gas emissions. This calls for climate-smart agriculture—agriculture that helps to mitigate and adapt to climate change. Climate-smart agriculture measures are diverse and include emission reductions, sink enhancements, and fossil fuel offsets for mitigation. Adaptation measures include technological advancements, adaptive farming practices, and financial management. Here, we review the potentials and trade-offs of climate-smart agricultural measures by producers and consumers. Our two main findings are as follows: (1) The benefits of measures are often site-dependent and differ according to agricultural practices (e.g., fertilizer use), environmental conditions (e.g., carbon sequestration potential), or the production and consumption of specific products (e.g., rice and meat). (2) Climate-smart agricultural measures on the supply side are likely to be insufficient or ineffective if not accompanied by changes in consumer behavior, as climate-smart agriculture will affect the supply of agricultural commodities and require changes on the demand side in response. Such linkages between demand and supply require simultaneous policy and market incentives. It, therefore, requires interdisciplinary cooperation to meet the twin challenge of climate change and food security. The link to consumer behavior is often neglected in research but regarded as an essential component of climate-smart agriculture. We argue for not solely focusing research and implementation on one-sided measures but designing good, site-specific combinations of both demand- and supply-side measures to use the potential of agriculture more effectively to mitigate and adapt to climate change

    Hybridization of polyuridylic acid to human DNA immobilized onto nitrocellulose filters.

    No full text
    The level of deoxyadenylate (da) regions in human DNA was estimated from formation of poly(U)-poly(da) triplexes on nitrocellulose filters that were RNAase resistant. The (dA) rich sequences were determined following mild ribonuclease treatment of the poly(U)-DNA hybrids (5 mug/ml at 25 degreesC for 30 min), where as exhaustive ribonuclease treatment (5 mug/ml at 25 degrees C for 6 hr) estimated the more (dA) pure sequences. The level of (dA) rich regions was 0.39% of the DNA and for the more (dA) pure regions it was 0.07%. The (dA) regions were widely distributed throughout human DNA regardless of base composition or sequence repetition. However, a concentration of (dA) regions into main band CsC1 gradient fractions of DNA and into repeated DNA was observed

    Effect of growth stage on resistance to Drechslera teres f. teres in barley

    No full text
    vo
    • …
    corecore