328 research outputs found

    Fabrication and Characterisation of an Adaptable Plasmonic Nanorod Array for Solar Energy Conversion

    Get PDF
    The surface plasmonic modes of a side-by-side aligned gold nanorod array supported on a gold substrate has been characterised by electron energy loss spectroscopy (EELS). Plasmonic coupling within the array splits the nanorods' longitudinal mode into a bright mode (symmetrically aligned dipoles) and a dark mode (anti-symmetrically aligned dipoles). We support this observation by means of finite element modelling (FEM)

    Application of automated electron microscopy imaging and machine learning to characterise and quantify nanoparticle dispersion in aqueous media

    Get PDF
    For many nanoparticle applications it is important to understand dispersion in liquids. For nanomedicinal and nanotoxicological research this is complicated by the often complex nature of the biological dispersant and ultimately this leads to severe limitations in the analysis of the nanoparticle dispersion by light scattering techniques. Here we present an alternative analysis and associated workflow which utilises electron microscopy. The need to collect large, statistically relevant datasets by imaging vacuum dried, plunge frozen aliquots of suspension was accomplished by developing an automated STEM imaging protocol implemented in an SEM fitted with a transmission detector. Automated analysis of images of agglomerates was achieved by machine learning using two free open‐source software tools: CellProfiler and ilastik. The specific results and overall workflow described enable accurate nanoparticle agglomerate analysis of particles suspended in aqueous media containing other potential confounding components such as salts, vitamins and proteins

    Transmission electron microscopy of a model crystalline organic, theophylline

    Get PDF
    We report on the use of transmission electron microscopy (TEM) to analyse the diffraction patterns of the model crystalline organic theophylline to investigate beam damage in relation to changing accelerating voltage, sample temperature and TEM grid support films. We find that samples deposited on graphene film grids have the longest lifetimes when also held at -190 °C and imaged at 200 kV accelerating voltage. Finally, atomic lattice images are obtained in bright field STEM by working close to the estimated critical electron dose for theophylline

    Single-atom spectroscopy of phosphorus dopants implanted into graphene

    Get PDF
    One of the keys behind the success of modern semiconductor technology has been the ion implantation of silicon, which allows its electronic properties to be tailored. For similar purposes, heteroatoms have been introduced into carbon nanomaterials both during growth and using post-growth methods. However, due to the nature of the samples, it has been challenging to determine whether the heteroatoms have been incorporated into the lattice as intended. Direct observations have so far been limited to N and B dopants, and incidental Si impurities. Furthermore, ion implantation of these materials is challenging due to the requirement of very low ion energies and atomically clean surfaces. Here, we provide the first atomic-resolution imaging and electron energy loss spectroscopy (EELS) evidence of phosphorus atoms in the graphene lattice, implanted by low-energy ion irradiation. The measured P L ₂‚₃-edge shows excellent agreement with an ab initio spectrum simulation, conclusively identifying the P in a buckled substitutional configuration. While advancing the use of EELS for single-atom spectroscopy, our results demonstrate the viability of phosphorus as a lattice dopant in sp ÂČ-bonded carbon structures and provide its unmistakable fingerprint for further studies

    The Sigma 13 (10-14) twin in alpha-Al2O3: A model for a general grain boundary

    Full text link
    The atomistic structure and energetics of the Sigma 13 (10-14)[1-210] symmetrical tilt grain boundary in alpha-Al2O3 are studied by first-principles calculations based on the local-density-functional theory with a mixed-basis pseudopotential method. Three configurations, stable with respect to intergranular cleavage, are identified: one Al-terminated glide-mirror twin boundary, and two O-terminated twin boundaries, with glide-mirror and two-fold screw-rotation symmetries, respectively. Their relative energetics as a function of axial grain separation are described, and the local electronic structure and bonding are analysed. The Al-terminated variant is predicted to be the most stable one, confirming previous empirical calculations, but in contrast with high-resolution transmission electron microscopy observations on high-purity diffusion-bonded bicrystals, which resulted in an O-terminated structure. An explanation of this discrepancy is proposed, based on the different relative energetics of the internal interfaces with respect to the free surfaces

    The prismatic Sigma 3 (10-10) twin bounday in alpha-Al2O3 investigated by density functional theory and transmission electron microscopy

    Full text link
    The microscopic structure of a prismatic Σ3\Sigma 3 (101ˉ0)(10\bar{1}0) twin boundary in \aal2o3 is characterized theoretically by ab-initio local-density-functional theory, and experimentally by spatial-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope (STEM), measuring energy-loss near-edge structures (ELNES) of the oxygen KK-ionization edge. Theoretically, two distinct microscopic variants for this twin interface with low interface energies are derived and analysed. Experimentally, it is demonstrated that the spatial and energetical resolutions of present high-performance STEM instruments are insufficient to discriminate the subtle differences of the two proposed interface variants. It is predicted that for the currently developed next generation of analytical electron microscopes the prismatic twin interface will provide a promising benchmark case to demonstrate the achievement of ELNES with spatial resolution of individual atom columns

    Structure and dielectric properties of yttrium-doped Ca0.28Ba0.72Nb2O6 ceramics

    Get PDF
    An unfilled tungsten bronze-structured ferroelectric ceramic, Ca0.28Ba0.72Nb2O6 (CBN28), has been doped with Y3+ to produce ceramics with a nominal composition, (Ca0.28Ba0.72)1–3w/2YwNb2O6 [0 ≀ w ≀ 0.05]. The substitution of Y3+ for Ca2+/Ba2+, and consequent additional vacancy formation, is assumed to occur on the A1/A2 sites. This resulted in a minor reduction of the c lattice parameter, and unit cell volume. For undoped CBN28, there was a slightly diffuse relative permittivity-temperature (Δr-T) peak at 268 ⁰C. The peak became much broader for sample compositions w = 0.04 and 0.05 and the peak temperature showed a level of frequency dependence consistent with weak relaxor behaviour. The polarisation-electric field loops became narrower for samples w = 0.04 and 0.05, corresponding to a reduction in remnant polarisation value, from 2.4 to 0.8 ”C cm−2 (30 kV cm−1). The Y doped ceramics exhibited stable relative permittivity over a wide temperature range, the variation being within± 15% of the median value from 36 ⁰C to 218 ⁰C for w = 0.05, when measured at 1 kHz. Consequently, we suggest that A site donor-doping and aliovalent B site doping of CBN holds potential for industry standard, temperature stable, high temperature dielectrics (ɛr ≄ 500 ± 15% from - 55–250 + ⁰C)
    • 

    corecore