4 research outputs found

    Dimensional Reduction for Directed Branched Polymers

    Full text link
    Dimensional reduction occurs when the critical behavior of one system can be related to that of another system in a lower dimension. We show that this occurs for directed branched polymers (DBP) by giving an exact relationship between DBP models in D+1 dimensions and repulsive gases at negative activity in D dimensions. This implies relations between exponents of the two models: γ(D+1)=α(D)\gamma(D+1)=\alpha(D) (the exponent describing the singularity of the pressure), and ν⊥(D+1)=ν(D)\nu_{\perp}(D+1)=\nu(D) (the correlation length exponent of the repulsive gas). It also leads to the relation θ(D+1)=1+σ(D)\theta(D+1)=1+\sigma(D), where σ(D)\sigma(D) is the Yang-Lee edge exponent. We derive exact expressions for the number of DBP of size N in two dimensions.Comment: 7 pages, 1 eps figure, ref 24 correcte

    Directed Branched Polymer near an Attractive Line

    Full text link
    We study the adsorption-desorption phase transition of directed branched polymer in d+1d+1 dimensions in contact with a line by mapping it to a dd dimensional hard core lattice gas at negative activity. We solve the model exactly in 1+1 dimensions, and calculate the crossover exponent related to fraction of monomers adsorbed at the critical point of surface transition, and we also determine the density profile of the polymer in different phases. We also obtain the value of crossover exponent in 2+1 dimensions and give the scaling function of the sticking fraction for 1+1 and 2+1 dimensional directed branched polymer.Comment: 19 pages, 4 figures, accepted for publication in J. Phys. A:Math. Ge

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d≥3d \ge 3, these pathologies occur in a full neighborhood {β>β0, ∣h∣<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d≥2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d≥4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore