17 research outputs found

    Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase β1-Containing Complexes

    Get PDF
    SummaryThe AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that plays a pivotal role in regulating cellular and whole-body metabolism. Activation of AMPK reverses many of the metabolic defects associated with obesity and type 2 diabetes, and therefore AMPK is considered a promising target for drugs to treat these diseases. Recently, the thienopyridone A769662 has been reported to directly activate AMPK by an unexpected mechanism. Here we show that A769662 activates AMPK by a mechanism involving the β subunit carbohydrate-binding module and residues from the γ subunit but not the AMP-binding sites. Furthermore, A769662 exclusively activates AMPK heterotrimers containing the β1 subunit. Our findings highlight the regulatory role played by the β subunit in modulating AMPK activity and the possibility of developing isoform specific therapeutic activators of this important metabolic regulator

    Remodeling of Purinergic Receptor-Mediated Ca2+ Signaling as a Consequence of EGF-Induced Epithelial-Mesenchymal Transition in Breast Cancer Cells

    Get PDF
    Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis

    Mutations in the Gal83 Glycogen-Binding Domain Activate the Snf1/Gal83 Kinase Pathway by a Glycogen-Independent Mechanism

    No full text
    The yeast Snf1 kinase and its mammalian ortholog, AMP-activated protein kinase (AMPK), regulate responses to metabolic stress. Previous studies identified a glycogen-binding domain in the AMPK β1 subunit, and the sequence is conserved in the Snf1 kinase β subunits Gal83 and Sip2. Here we use genetic analysis to assess the role of this domain in vivo. Alteration of Gal83 at residues that are important for glycogen binding of AMPK β1 abolished glycogen binding in vitro and caused diverse phenotypes in vivo. Various Snf1/Gal83-dependent processes were upregulated, including glycogen accumulation, expression of RNAs encoding glycogen synthase, haploid invasive growth, the transcriptional activator function of Sip4, and activation of the carbon source-responsive promoter element. Moreover, the glycogen-binding domain mutations conferred transcriptional regulatory phenotypes even in the absence of glycogen, as determined by analysis of a mutant strain lacking glycogen synthase. Thus, mutation of the glycogen-binding domain of Gal83 positively affects Snf1/Gal83 kinase function by a mechanism that is independent of glycogen binding

    Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site

    No full text
    AMP-activated protein kinase (AMPK) is a αβγ heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the α subunit and by AMP allosteric control previously thought to be mediated by both α and γ subunits. Here we present evidence that adjacent γ subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the γ1 CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast γ homolog, snf4 contains a His151Gly substitution, and when this is introduced into γ1, AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in γ1 corresponds to the site of mutation in human γ2 and pig γ3 genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the α and γ subunits and that AMP functions to derepress AMPK activity

    Exemplary multiplex bisulfite amplicon data used to demonstrate the utility of Methpat

    Get PDF
    Background: DNA methylation is a complex epigenetic marker that can be analyzed using a wide variety of methods. Interpretation and visualization of DNA methylation data can mask complexity in terms of methylation status at each CpG site, cellular heterogeneity of samples and allelic DNA methylation patterns within a given DNA strand. Bisulfite sequencing is considered the gold standard, but visualization of massively parallel sequencing results remains a significant challenge. Findings: We created a program called Methpat that facilitates visualization and interpretation of bisulfite sequencing data generated by massively parallel sequencing. To demonstrate this, we performed multiplex PCR that targeted 48 regions of interest across 86 human samples. The regions selected included known gene promoters associated with cancer, repetitive elements, known imprinted regions and mitochondrial genomic sequences. We interrogated a range of samples including human cell lines, primary tumours and primary tissue samples. Methpat generates two forms of output: a tab-delimited text file for each sample that summarizes DNA methylation patterns and their read counts for each amplicon, and a HTML file that summarizes this data visually. Methpat can be used with publicly available whole genome bisulfite sequencing and reduced representation bisulfite sequencing datasets with sufficient read depths. Conclusions: Using Methpat, complex DNA methylation data derived from massively parallel sequencing can be summarized and visualized for biological interpretation. By accounting for allelic DNA methylation states and their abundance in a sample, Methpat can unmask the complexity of DNA methylation and yield further biological insight in existing datasets

    Cancer : the to and fro of tumour spread

    No full text
    The spread of cells from the primary site of a solid tumour to distant sites remains the major cause of disease and death associated with these cancers. For tumour cells to spread, or metastasize, they must modify their 'anchored' state and detach from their neighbouring cells; migrate through tissues into the blood and lymph systems; survive in these circulation systems; and then leave the vessels at an appropriate site to form another tumour1. Many of these events are favoured by conversions between two cellular states — the epithelial and mesenchymal phenotypes. But the role of these transitions in cancer metastasis is controversial. Writing in Cancer Cell, Tsai et al.2 and Ocaña et al.3 help to clarify this issue..
    corecore