92 research outputs found

    A Causal Entropy Bound

    Get PDF
    The identification of a causal-connection scale motivates us to propose a new covariant bound on entropy within a generic space-like region. This "causal entropy bound", scaling as the square root of EV, and thus lying around the geometric mean of Bekenstein's S/ER and holographic S/A bounds, is checked in various "critical" situations. In the case of limited gravity, Bekenstein's bound is the strongest while naive holography is the weakest. In the case of strong gravity, our bound and Bousso's holographic bound are stronger than Bekenstein's, while naive holography is too tight, and hence typically wrong.Comment: 12 pages, no figures, a reference added and minor typos correcte

    Tensor perturbations in high-curvature string backgrounds

    Get PDF
    We derive a generalized equation for the evolution of tensor perturbations in a cosmological background, taking into account higher-curvature contributions and a tree-level coupling to the dilaton in the string frame. The equation is obtained by perturbing the gravi-dilaton string effective action, expanded up to first order in α\alpha'. The α\alpha' corrections can modify the low-energy perturbation spectrum, but the modifications are shown to be small when the background curvature keeps constant in the string frame.Comment: 9 pages, REVTEX, three figures included using EPSFIG. An updated collection of papers on the pre-big bang scenario in string cosmology is a available at http://www.to.infn.it/teorici/gasperin

    Perturbative stability of the QCD analysis of DIS data

    Get PDF
    We perform pQCD analysis of the existing DIS data for charged leptons with account of corrections up to the NNLO. The parton distributions, value of strong coupling constant, and high-twist terms are extracted and their stability with respect to account of the NNLO corrections is analyzed. All the quantities are generally stable within their experimental errors. Obtained value of the strong coupling constant is αsNNLO(MZ)=0.1143±0.0014(exp)\alpha_s^{\rm NNLO}(M_{\rm Z})=0.1143\pm 0.0014 ({\rm exp}) with a guess αsNNNLO(MZ)0.113\alpha_s^{\rm NNNLO}(M_{\rm Z})\sim 0.113.Comment: 4 pages, LATEX, 3 figures (EPS). Talk presented at the 37th Rencontres de Moriond, QCD and Hadronic Interactions, Les Arcs 1800 (France), March 16-23 200

    Higher-Derivative Quantum Cosmology

    Full text link
    The quantum cosmology of a higher-derivative derivative gravity theory arising from the heterotic string effective action is reviewed. A new type of Wheeler-DeWitt equation is obtained when the dilaton is coupled to the quadratic curvature terms. Techniques for solving the Wheeler-DeWitt equation with appropriate boundary conditions shall be described, and implications for semiclassical theories of inflationary cosmology will be outlined.Comment: 11 pages TeX. A term has been removed from equation (13

    AdS/CFT and quantum-corrected brane entropy

    Full text link
    It is shown that quantum-induced (inflationary) brane Universe occurs in the bulk 5d AdS black hole in accordance with AdS/CFT correspondence. Brane stress tensor is induced by quantum effects of dual CFT and brane crosses the horizon of AdS black hole. Quantum-corrected Hubble constant, Hawking temperature and entropy are found on the brane (and at the horizon). The similarity between CFT entropy at the horizon and FRW equations is extended on the quantum level. This suggests the way to understand cosmological entropy bounds in quantum gravity.Comment: LaTeX file 17 pages, discussion is extended, version to appear in CQ

    Electroweak baryogenesis induced by a scalar field

    Get PDF
    A cosmological pseudoscalar field coupled to hypercharge topological number density can exponentially amplify hyperelectric and hypermagnetic fields while coherently rolling or oscillating, leading to the formation of a time-dependent condensate of topological number density. The topological condensate can be converted, under certain conditions, into baryons in sufficient quantity to explain the observed baryon asymmetry in the universe. The amplified hypermagnetic field can perhaps sufficiently strengthen the electroweak phase transition, and by doing so, save any pre-existing baryon number asymmetry from extinction.Comment: 8 pages, 4 figure

    A plausible upper limit on the number of e-foldings

    Full text link
    Based solely on the arguments relating Friedmann equation and the Cardy formula we derive a bound for the number of e-folds during inflation for a standard Friedmann-Robertson-Walker as well as non-standard four dimensional cosmology induced by a Randall-Sundrum-type model.Comment: 4 pages. Version appearing in the Physical Review

    Low energy effective string cosmology

    Full text link
    We give the general analytic solutions derived from the low energy string effective action for four dimensional Friedmann-Robertson-Walker models with dilaton and antisymmetric tensor field, considering both long and short wavelength modes of the HH-field. The presence of a homogeneous HH-field significantly modifies the evolution of the scale factor and dilaton. In particular it places a lower bound on the allowed value of the dilaton. The scale factor also has a lower bound but our solutions remain singular as they all contain regions where the spacetime curvature diverges signalling a breakdown in the validity of the effective action. We extend our results to the simplest Bianchi I metric in higher dimensions with only two scale factors. We again give the general analytic solutions for long and short wavelength modes for the HH field restricted to the three dimensional space, which produces an anisotropic expansion. In the case of HH field radiation (wavelengths within the Hubble length) we obtain the usual four dimensional radiation dominated FRW model as the unique late time attractor.Comment: 22 pages, LaTeX, SUSX-TH-94/37, SUSSEX-AST-94/6-2. (Some terminology and figure captions corrected, references added.

    Holographic principle in the BDL brane cosmology

    Get PDF
    We study the holographic principle in the brane cosmology. Especially we describe how to accommodate the 5D anti de Sitter Schwarzschild (AdSS5_5) black hole in the Binetruy-Deffayet-Langlois (BDL) approach of brane cosmology. It is easy to make a connection between a mass MM of the AdSS5_5 black hole and a conformal field theory (CFT)-radiation dominated universe on the brane in the moving domain wall approach. But this is not established in the BDL approach. In this case we use two parameters C1,C2C_1, C_2 in the Friedmann equation. These arise from integration and are really related to the choice of initial bulk matter. If one chooses a bulk energy density ρB\rho_B to account for a mass MM of the AdSS5_5 black hole and the static fifth dimension, a CFT-radiation term with ρCFTM/a4\rho_{CFT} \sim M/a^{4} comes out from the bulk matter without introducing a localized matter distribution on the brane. This means that the holographic principle can be established in the BDL brane cosmology.Comment: 9 pages, a version to appear in PR

    Numerical Study of Inhomogeneous Pre-Big-Bang Inflationary Cosmology

    Get PDF
    We study numerically the inhomogeneous pre-big-bang inflation in a spherically symmetric space-time. We find that a large initial inhomogeneity suppresses the onset of the pre-big-bang inflation. We also find that even if the pre-big-bang inflationary stage is realized, the initial inhomogeneities are not homogenized. Namely, during the pre-big-bang inflation ``hairs''(irregularities) do not fall, in sharp contrast to the usual (potential energy dominated) inflation where initial inhomogeneity and anisotropy are damped and thus the resulting universe is less sensitive to initial conditions.Comment: 12 pages + 14 figures, to be published in Phys.Rev.
    corecore