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Abstract

The identification of a causal-connection scale motivates us to propose

a new covariant bound on entropy within a generic space-like region. This

“causal entropy bound”, scaling as
√

EV , and thus lying around the geometric

mean of Bekenstein’s S/ER and holographic S/A bounds, is checked in various

“critical” situations. In the case of limited gravity, Bekenstein’s bound is the

strongest while naive holography is the weakest. In the case of strong gravity,

our bound and Bousso’s holographic bound are stronger than Bekenstein’s,

while naive holography is too tight, and hence typically wrong.

The second law of thermodynamics states that the entropy of a closed system tends to

grow towards its largest possible value. But what is this maximal value? Bekenstein [1]

has suggested that, for a limited gravity system of energy E, whose size R is larger than its

gravitational radius, R > Rg ≡ 2GNE, entropy is bounded by SBEB,

SBEB = ER/h̄ = Rg R l−2
P , (1)
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where lP is the Planck length (throughout this paper we will stress functional dependence,

while ignoring numerical factors, and set c = kB = 1). Note that (1) bounds the ratio

entropy/energy for a system of given size. The entropy of normal systems, such as matter in

thermal equilibrium, is well below bound (1), moreover, in the 18 years which elapsed since

Bekenstein’s proposal, and despite an ongoing debate [2], no physical example in which (1)

is violated has been produced. Is the same bound applicable to more general situations, for

example, in cosmology? This question was addressed by Bekenstein himself [3], who gave a

prescription for a cosmological extension by choosing R in Eq. (1) to be the particle horizon.

Is this a correct extension? And, even if so, is it possible to find stronger bounds for systems

that are not of limited gravity?

Holography [4] suggests that maximal entropy is bounded by SHOL,

SHOL = Al−2
P , (2)

where A is the area of the space-like surface enclosing a certain region of space. For systems

of limited gravity, since R > Rg, A = R2, (1) implies the holography bound (2). Is it

possible to extend entropy/area holographic bounds to more general situations, for example,

to cosmology where, for large enough regions, it soon becomes tighter than entropy/energy

bounds? This issue was first addressed by Fischler and Susskind (FS) [5], who proposed

that the area of the particle horizon should bound the entropy on the backward-looking

light cone according to (2). It was soon realized, however, that the FS proposal requires

modifications, since violations of it were found to occur in physically reasonable situations.

Several attempts were made to mend the FS proposal, first within cosmology [6–9], and

then, by Bousso, in arbitrary space-times [10]. In some cosmological situations, Bousso’s

proposal reduces to the previously proposed ones, which identify the maximal size of a spatial

region for which holography works with the Hubble radius [6], [7] (or apparent horizon [8]),

while in other situations it is quite different. The advantages of Bousso’s proposal are

that (i) it is very general; and (ii) it is manifestly covariant. A possible shortcoming of

the proposal is that it bounds entropy on light-like hypersurfaces: in order to extend the
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bound to space-like regions, a “space-like projection”, which is not always possible, has to

be performed [10].

We make here a motivated proposal for an improved covariant bound, applicable to

entropy on space-like hypersurfaces, and test it in several critical cases. We then compare

our bound to other proposals, in particular to Bekenstein’s and Bousso’s, and show that,

for systems of limited gravity, Bekenstein’s bound is the tightest, while, in other situations,

our bound is the strongest one proposed so far which does not lead to contradictions for

space-like regions. A crucial difference between our proposal and Bousso’s is that Bousso

decides from the start to look for a holographic S/A bound and, as he points out, this forces

him to consider light-like hypersurfaces. We do not insist, a priori, on a holographic bound,

but aim at generality of the hypersurface and check how holography may or may not work

a posteriori.

Let us first state our proposal, and then motivate and test it. Consider a generic spacelike

hypersurface, defined by the equation τ = 0, and a compact region lying within it defined by

σ ≤ 0. We propose that the entropy contained in this region, S(τ = 0, σ ≤ 0), is bounded

by SCEB,

SCEB = l−2
P

∫

σ<0

d4x
√−gδ(τ)

√
Max± [(Gµν ± Rµν)∂µτ∂ντ ] =

l−1
P h̄−1/2

∫

σ<0

d4x
√−gδ(τ)

√

Max±

[
(Tµν ± Tµν ∓

1

2
gµν T )∂µτ∂ντ

]
. (3)

Here Gµν , Rµν are the Einstein and Ricci tensor, respectively, Tµν is the energy-momentum

tensor, and T its trace. To derive the second equality we have used Einstein’s equations,

Gµν = 8πGNTµν . Note the appearance of the square-root of the energy contained in the

region, which we alluded to in the abstract. Note also that (3) is manifestly covariant, and

invariant under reparametrization of the hypersurface equation: such an invariance requires a

square-root of ∂µτ∂ντ . Reality of SCEB is assured if sources obey the weak energy condition,

Tµν∂
µτ∂ντ ≥ 0, since then the sum of the two combinations in (3), and thus their maximum,

are positive. In the limit in which the hypersurface is lightlike, Eq.(3) becomes:
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SCEB =
∫

σ<0
d4x

√−gδ(τ)
√

Rµν∂µτ∂ντ

=
∫

σ<0
d4x

√−gδ(τ)
√

Tµν∂µτ∂ντ , ∂µτ∂µτ = 0 , (4)

and appears to be related to one of the assumptions made in [11] (Eq. (1.10)) in order

to derive a modified Bousso-type bound. We should stress, however, that (4) does not

necessarily follow from the arguments given below in support of (3).

The physical motivations leading us to the above proposal are similar to those used in the

recently proposed Hubble-entropy-bound (HEB) [7] (see also [6,8,9]) i.e.: (i) that entropy

is maximized, in a given region of space, by the largest black hole that can fit in it (ii)

that the largest black hole that can hold together without falling apart in a cosmological

background has typically the size of the Hubble horizon. This second, crucial assumption

appears to be supported qualitatively by a number of previous results [12], but clearly needs

to be refined and, possibly, to be defined covariantly. With such a goal in mind, we will

proceed as follows: we will start by identifying a critical (“Jeans”) length scale above which

perturbations are causally disconnected so that black holes of larger size, very likely, cannot

form. We will first find this causal connection (CC) scale RCC for the simplest cosmological

backgrounds, then extend it to more general cases and, finally, guess the completely general

expression using general covariance.

In order to identify the CC scale for a homogeneous, isotropic, and spatially flat back-

ground, let us consider a generic perturbation around such a background in the hamil-

tonian approach developed in [13]. The Fourier components of the (normalized) pertur-

bation and of its (normalized) conjugate momentum satisfy Schroedinger-like equations

Ψ̂k
′′+

[
k2 − (S1/2)′′S−1/2

]
Ψ̂k=0, Π̂k

′′+
[
k2 − (S−1/2)′′S1/2

]
Π̂k=0, where k is the comoving momen-

tum, a prime denotes differentiation w.r.t. conformal time η, and S1/2 is the so-called “pump

field”, a combination of the various backgrounds which depends on the specific perturba-

tion under study. The perturbation equations clearly identify a “Jeans-like” CC comoving

momentum

k2
CC = Max

[
(S1/2)′′S−1/2 , (S−1/2)′′S1/2

]
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= Max
[
K′ + K2 , −K′ + K2

]
, (5)

where K = (S1/2)′S−1/2. Note that eq. (5) always defines a real kCC since the sum of the

two quantities appearing on the r.h.s. is positive semidefinite. Since tensor perturbations

are always present, let us restrict our attention to them. The “pump field” S1/2 is simply

given, in this case, by the scale factor a(η) so that K → H = a′/a. Eq. (5) is immediately

converted into the definition of a proper “Jeans” CC length RCC = ak−1
CC . Substituting into

eq.(5), and expressing the result in terms of proper-time quantities, we obtain (for tensor

perturbations)

R−2
CC = Max

[
Ḣ + 2H2 , − Ḣ

]
. (6)

Before trying to recast eq.(6) in a more covariant form let us remove the assumption of

spatial flatness by introducing the usual spatial-curvature parameter κ (κ = 0,±1). The

study of perturbations in non-flat space [14] is considerably more complicated than in a

spatially-flat background. The final result, however, appears to be extremely simple [15],

and can be obtained from the flat case by the following replacements in eq.(5): H2 → H2+κ,

H′ → H′. Using this simple rule (see below for another confirmation of its validity) we arrive

at the following generalization of (6)

R−2
CC = Max

[
Ḣ + 2H2 + κ/a2, − Ḣ + κ/a2

]
. (7)

At this point we could have introduced anisotropy in our homogeneous background and

study perturbations with or without spatial curvature. This should certainly be done as a

check of a short-cut procedure based on general covariance that we adopt instead. We note

that the 00 components of the Ricci and Einstein tensors for our background are given by

R00 = −3(Ḣ + H2) , G00 = 3(H2 + κ/a2) . (8)

Obviously,

R−2
CC =

1

3
Max∓ (G00 ∓ R00)

= 4πGN Max
[
ρ

3
− p , ρ + p

]
, (9)
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where we have inserted Einstein’s equations using, as an example, a perfect-fluid energy

momentum tensor, T µ
ν = diag(ρ,−p,−p,−p). Eq.(9) is guaranteed to define a real RCC if

the weak energy condition (reading here ρ > 0) holds, since the sum of the two combinations

is positive in this case [16].

As a final step, let us convert eq.(9) into an explicitly covariant bound on entropy using,

as in [7], the idea that entropy is maximized by having maximal size black holes filling up

the volume. Using RCC as the maximal scale for black holes, we get a bound on entropy

which scales like S ∼ V R−3
CC R2

CC l−2
P = V R−1

CC l−2
P . We now express R−1

CC as in (9) in

terms of the components of the Ricci and Einstein tensors in the direction orthogonal to

the hypersurface on which the entropy is being computed. This can be done covariantly by

defining the hypersurface through the equation τ = 0 and by identifying the normal with

the vector ∇µτ . This procedure leads immediately to the proposal (3).

Alternatively, using standard 3 + 1 ADM formalism [17], we can express the relevant

components of the Ricci and Einstein tensors in terms of the intrinsic and extrinsic curvature

of the hypersurface under study and arrive at the following final formula:

SCEB = l−2
P

∫
d3x

√
h [Max (P , Q)]1/2 , (10)

where P = 1
2
R+ θ̇ + 2

3
θ2 +σ2 −A , Q = 1

2
R− θ̇−3σ2 +A, and using standard notations, we

have denoted by R the intrinsic 3-curvature scalar, by θ the expansion rate, by σ the shear,

and by A the “acceleration” given (for vanishing shifts Ni) in terms of the lapse function N

by A = N−1N ,i
;i.

We turn to check our proposal for various physical systems and to verify that it is sensible.

1. Systems of limited gravity

We note (see below) that for systems of limited gravity the Bekenstein bound is tighter than

ours SBEB < SCEB. Therefore, in all systems for which the BEB is obeyed, ours will be

obeyed as well.

2. Cosmology

The universe is a system of strong self-gravity. The geometry of the universe is determined
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by self-gravity, and the size of the universe is at least its gravitational radius. The strongest

challenges to entropy bounds in general, and to our bound in particular, come from con-

sidering (re)collapsing universes. We discuss three cases basically exhausting the possible

types of cosmologies:

• (i) |Ḣ| ∼ H2. In this region effective energy density and pressure are of the same

order, ρ ∼ p, and all previously suggested length scales that should be considered in

entropy bounds, such as particle horizon, apparent horizon, RCC , Hubble length, are

parametrically equal. In particular, it is already established that HEB is not violated

if some reasonable restrictions on the equation of state are imposed, and therefore our

bound (and others) is also valid.

• (ii) |Ḣ| ≪ H2. In this case |ρ + p| ≪ ρ, and the universe is inflationary. Here the

naive holographic bound fails miserably, but HEB does well. Since in this case RCC is

parametrically equal to |H|−1, it follows that CEB works as well as HEB.

• (iii) |Ḣ| ≫ H2 i.e. |ρ| ≪ p. Since ρ and p are the effective energy density and

pressure, there are no problems with causality. This case occurs, for instance, near the

turning point of an expanding universe which recollapses as the result of a negative

cosmological constant, of positive spatial curvature (or of both). Both the naive HEB

and the apparent horizon bound (AHB) of [8] fail here, while Bousso’s prescription

does fine. We would like to show that CEB can easily cope with this third case.

Consider either a flat or closed universe with some perfect fluid in thermal equilibrium

and a constant equation of state p = γρ , 1 > γ > −1, and with an additional small negative

cosmological constant Λ = −λ. The universe starts out expanding, reaches a maximal size,

and then contracts towards a singularity. In this case, matter entropy within a comoving

volume is constant in time, but near the point of maximal expansion the apparent horizon,

and the Hubble length, diverge, causing violation of the HEB and AHB. However, for a fixed

comoving volume, SCEB ∼ a3R−1
CC , and, since RCC is never larger than some maximal value,
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CEB has a chance of doing better.

To see this explicitly, note that, in this case, and independently of κ, R−2
CC =

1/3Max[1/2ρ0(1 − 3γ)a−3(1+γ) − 2λ , 3/2(1 + γ)ρ0a
−3(1+γ)] ≥ 1/2(1 + γ)ρ0a

−3(1+γ), where

ρ0 is the initial energy density and a is the ratio of the scale factor to its initial value.

It follows that, in a fixed comoving volume, SCEB ∼ a3/2(1−γ). Since γ < 1, this means

that SCEB grows during the expansion, reaches a maximum at the turning point, and then

starts decreasing. If we give initial conditions at a time when curvature and cosmological

constant are negligible, which is always the case at sufficiently early times, CEB will be

obeyed initially provided energy density and curvature are less than Planckian. But then

the above evolution of SCEB will guarantee that the bound is fulfilled at all times until

Planckian density and curvature is reached in the recollapsing phase, i.e. throughout the

classical evolution of our Universe.

In spite of the above encouraging results, we would like to express caution about the

assumption of homogeneity and isotropy. Since we are considering matter in thermal equi-

librium at temperature T , it has mass fluctuations
(

δM
M

)

ℓ
∼ (ℓT )−3, in a region of size ℓ,

which, once the universe starts contracting, begin to grow on time scales R−1
CC , so assuming

homogeneity and isotropy could be incorrect.

3. Collapsing regions

In this case we have limited computational power. We can qualitatively check cases that are

similar to the cosmological ones [18], such as homogeneous, isotropic contracting pressureless

regions, or a contracting homogeneous, isotropic region filled with a perfect fluid. The

pressureless case can be described by a Friedman interior and a Schwarzschild exterior.

Since CEB is valid for the analogue cosmological solution it is also valid for this case.

A particularly interesting case is that of the (generically non-homogeneous) collapse of

a stiff fluid (p = ρ), which, up to a simple field redefinition, can be mapped onto the

dilaton-driven inflation of string cosmology [19]. In this case one finds a constant SCEB

in agreement with the HEB result [7]. Hence, no problem arises in this case, even if one

starts from a saturated SCEB at the onset of collapse. For non-stiff equations of state, the
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situation appears less safe if one starts near saturation (this was already pointed out in [10]

for Bousso’s case). As Bousso himself points out, however, care must be taken in this case

of perturbations which tend to grow non linear and form singularities on rather short time

scales. Such cases cannot be described analytically, but have been looked at numerically.

We believe that numerical investigations of collapsing systems will be extremely useful in

determining the general validity of CEB and of other entropy bounds.

Finally, we compare our CEB to previously proposed bounds, in particular to Beken-

stein’s and Bousso’s. For systems of limited gravity whose size exceeds their Schwarzschild

radius: R > Rg, Bekenstein’s bound is given by S < SBEB = l−2
P R Rg, and Bousso’s pro-

cedure results in the holography bound (2) [10], S < SHOL = l−2
P R2, but since R > Rg,

SBEB < SHOL, and therefore Bousso’s bound is less stringent than Bekenstein’s. Consider

now CEB applied to the region of size R containing an isolated system. Expressing CEB in

the form (3) one immediately obtains:

SCEB = l−1
P R3/2E1/2h̄−1/2 = (SHOL SBEB)1/2 , (11)

implying

SBEB ≤ SCEB ≤ SHOL.

We conclude that for isolated systems of limited self-gravity the Bekenstein bound is the

tightest, followed by our CEB and, finally, by Bousso’s holographic bound. Similar scal-

ing properties for the HEB were discussed in [7]. The same scaling laws also follow from

(apparently unrelated) quantum measurement arguments, see [20].

For regions of space that contain so much energy that the corresponding gravitational

radius Rg exceeds R, Bekenstein’s bound is the weakest, while the naive holography bound

is the strongest (but very often wrong). Bousso’s proposal (see also [8]) uses the apparent

horizon RAH while CEB uses RCC . For homogeneous cosmologies, RCC < RAH , since R−2
CC ,

according to (7), is always larger than the average of the two terms appearing on its r.h.s.,

which is precisely R−2
AH = H2 + κ/a2. Since, for a fixed volume, the bounds scale like R−1

AH

or R−1
CC , we immediately find that CEB is generally more generous than the AHB proposed
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in [8]. This is what makes it possible for CEB to be fulfilled in the negative cosmological

case discussed above, where AHB or HEB are violated. Comparison with Bousso’s proposal

is more subtle, since he makes use of the AH area to bound entropy on light sheets. This

can be converted into a bound on the entropy of the space-like region inside the AH only

in special cases. That is what makes Bousso’s bound fulfilled even when the straight AHB

fails.

To summarize, we have found that, for systems of strong gravity,

SAHB ∼ SHEB ≤ SCEB, SBousso ≤ SBEB ,

i.e., that our CEB and Bousso’s holographic bound are the strongest (yet apparently safe)

bounds, while Bekenstein’s is the weakest. Instead, the naive holography bound comes out

badly: implied by Bekenstein’s in the case of limited gravity, and too tight (and hence

typically wrong) in the case of strong gravity. Bousso’s modification fares much better than

the naive holographic bound. We believe, however, that CEB, by being applicable to space-

like regions, stands out in terms of its physical motivations and its potential for practical

uses.

We anticipate applications of CEB to the study of the possibility that black hole remnants

carry enough entropy to restore unitary evolution. CEB may be converted into a new kind

of generalized second law following [21], and used to study cosmological singularities. The

investigation of these possibilities is left, however, to future work.
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