33 research outputs found

    alpha,omega-Bis(trialkoxysilyl) difunctionalized polycyclooctenes from ruthenium-catalyzed chain-transfer ring-opening metathesis polymerization

    No full text
    International audienceThe ring-opening metathesis polymerization/cross-metathesis (ROMP/CM) of cyclooctene (COE) using bis(trialkoxysilyl)alkenes as chain-transfer agents (CTAs) and Ru catalysts to afford difunctionalized polyolefins is reported. The formation of alpha,omega-bis(trialkoxysilyl) telechelic polycycloolefins (DF) with controlled molar mass values takes place quite selectively (>90 wt%), along with minor amounts of cyclic non-functionalized polymers (CNF), as evidenced by NMR, MALDI-ToF MS, SEC analyses and fractionation experiments. The nature of the CTA and catalyst influenced much the efficiency and selectivity of the reaction. (MeO)(3)SiCH2CH=CHCH2Si(OMe)(3) (2) and (MeO)(3)Si(CH2)(3)NHC(O)OCH2CH=CHCH2OC(O)NH (CH2)(3)Si(OMe)(3) (5) proved to be the most efficient CTAs in terms of reactivity, catalyst productivity and selectivity towards DF. Diurethane CTA 5 is easily prepared, and can also be conveniently generated in situ during the ROMP/CM. Grubbs' 2nd-generation catalyst (G2) and Hoveyda-Grubbs's catalyst (HG2) afforded the best compromise in terms of selectivity and productivity, with turnover numbers of up to 95 000 mol(COE) mol(Ru)(-1) and 5000 mol(CTA) mol(Ru)(-1)

    Syndioselective ring-opening polymerization and copolymerization of trans-1,4-cyclohexadiene carbonate mediated by achiral metal- and organo-catalysts

    No full text
    International audienceThe ring-opening polymerization (ROP) of trans-1,4-cyclohexadiene carbonate (CHDC) has been investigated computationally and experimentally. DFT computations indicate that ring-opening of CHDC is thermodynamically possible, yet to a lesser extent than that of trans-cyclohexene carbonate (CHC). Effective homopolymerizations of rac-CHDC and simultaneous or sequential copolymerizations of rac-CHDC with rac-CHC and L-LA were achieved with a diaminophenolate zinc-based complex ([(NNO)ZnEt]) or a guanidine (TBD) associated with an alcohol. These ROP reactions, which confirmed the lower reactivity of rac-CHDC vs. rac-CHC, especially in homopolymerization, proceeded without any decarboxylation. Quite uniquely, highly syndiotactic PCHDC was obtained from ROP of rac-CHDC with both the zinc- and TBD-based catalysts, as revealed by 13C{1H} NMR studies. The prepared homopolymers and block or random copolymers were characterized by 1H, 13C{1H} NMR, MALDI-ToF MS, SEC and DSC techniques

    α,ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach

    No full text
    International audienceα,ω-Di(glycerol carbonate) telechelic poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), poly(ester ether) (PEE), and poly(butadiene) (PBD) have been synthesized through chemical modification of the corresponding α,ω-dihydroxy telechelic polymers (PPG-OH2, PEG-OH2, PEE-OH2 and PBD-OH2, respectively). Tosylation of the polymer diols with 4-tosylmethyl-1,3-dioxolan-2-one (GC-OTs) afforded, in high yields, the desired PPG, PEG, PEE and PBD end-capped at both termini with a five-membered ring cyclic glycerol carbonate (4-hydroxymethyl-1,3-dioxolan-2-one, GC). The GC-functionalization of the polymers at both chain-ends has been confirmed by NMR (1H, 13C, 1D and 2D) and FTIR spectroscopies. Using PPG-GC2 to demonstrate the concept, the corresponding polyhydroxyurethanes (PHUs/non-isocyanate polyurethanes (NIPUs)) have been subsequently prepared following a non-isocyanate method upon ring-opening catalyst-free polyaddition of the PPG-GC2 with JEFFAMINEs (Mn = 230-2000 g mol−1). The effect of various additives introduced during the polyaddition reaction has been studied at different temperatures. In particular, addition of LiBr (5 mol%) to the reaction medium was found to slightly promote the cyclocarbonate/amine reaction. The polymerization process was supported by FTIR and SEC analyses

    Ring-opening metathesis polymerization of cyclooctene derivatives with chain transfer agents derived from glycerol carbonate

    No full text
    International audienceThe synthesis of a variety of mono- and di-(glycerol carbonate) telechelic polyolefins has been achieved upon ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) of cyclooctene (COE) derivatives in the presence of a vinyl or acryloyl derivative of glycerol carbonate (GC) acting as a chain-transfer agent (CTA). Reaction monitoring based on SEC and 1H NMR analyses suggested that the ROMP proceeds through the formation of first the α-GC,ω-vinyl-poly(cyclooctene) (PCOE) intermediate, which eventually evolves over time into the α,ω-di(GC)-PCOE. The nature of the solvent was shown to have a significant impact on both the reaction rates and the eventual selectivity for the mono-/di-telechelic PCOE. ROMP of 3-alkyl (methyl, ethyl, n-hexyl)-substituted COEs (3-R-COEs) afforded only the α-GC,ω-vinyl-poly(3-R-COE)s, as a result of the steric hindrance around the active intermediate, while a 5-ethyl substituted COE (5-Et-COE) enabled access to the corresponding α,ω-di(GC)-poly(5-Et-COE). The ROMP of 5,6-epoxy-, 5-hydroxy- and 5-oxo-functionalized COEs in the presence of acryloyl-GC as the CTA has also been achieved, affording from the first two monomers polymers with GC end-groups at both extremities, while a 60 : 40 mixture of mono- and di-GC terminated P(5-O[double bond, length as m-dash]COE) was observed in the latter case

    Polymerization of sterically hindered a-olefins with single-site group 4 metal catalyst precursors

    Get PDF
    A variety of group 4 metal catalytic systems (C2-symmetric {EBTHI}-, {SBI}-type zirconocene complexes (C2-1–4); C1-symmetric (C1-5–8) and Cs-symmetric (Cs-9) {Cp/Flu}-type zirconocene complexes; Cp*2ZrCl2 (Cp* 2-10)), half-metallocene complexes (CpTiCl3, HM-11), constrained-geometry (CGC-12) titanium catalysts) and post-metallocene catalysts (Dow’s ortho-metallated amido-pyridino hafnium complex (PM-13)) have been screened in the polymerization of the sterically demanding 3-methylbut-1-ene (3MB1) and vinylcyclohexane (VCH). All systems proved to be sluggishly active under regular conditions (toluene, 20°C; MAO as cocatalyst) towards 3MB1, with productivities in the range 0–15 kg.mol–1.h–1. Higher productivities (up to 75 kg.mol–1.h–1) were obtained in the polymerization of VCH with C1-symmetric metallocene catalysts under the same conditions, while Cs-symmetric systems were found to be completely inactive. For both 3MB1 and VCH, under all conditions tested, the most productive catalyst appeared to be Dow’s post-metallocene system PM-13/MAO. Optimization of the polymerization conditions led to a significant enhancement of the productivities of this catalyst system towards both 3MB1 and VCH up to 390 and 760 kg.mol–1.h–1, respectively (Tpolym = 70°C). 13C NMR spectroscopy studies revealed that all isolated P(3MB1) and P(VCH) polymers were isotactic, regardless the nature/symmetry of the (pre)catalyst used. The nature of the chain-end groups in P(3MB1) is consistent with two different chaintermination mechanisms, namely b-H elimination/transfer-to-monomer for C2-1/MAO and chain-transfer to Me3Al for PM-13/MAO systems, respectively. For polymerization of VCH with PM-13/MAO at 70°C, b-H elimination / transfer-to-monomer appeared to be the main chain termination reaction

    Generation electrochimique de catalyseurs Ziegler-Natta pour la polymerisation de l'ethylene

    No full text
    SIGLECNRS TD Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Functionalized Polycarbonates from Dihydroxyacetone: Insights into the Immortal Ring-Opening Polymerization of 2,2-Dimethoxytrimethylene Carbonate

    No full text
    International audienceFunctionalized polycarbonates derived from 2,2-dimethoxytrimethylene carbonate (TMC(OMe)2) have been prepared with controlled molecular features by immortal ring-opening polymerization , under mild conditions (bulk, 60-90 °C), using various (metallo)organic/alcohol (diol ) binary catalyst systems: the β-diiminate zinc complex [(BDIiPr)Zn(N(SiMe3)2)] (BDI = CH(CMeNC6H3-2,6-iPr2)2), the aluminium triflate, or the organic bases 4-N,N-dimethylaminopyridine (DMAP), 1.5.7-triazabicyclo-[4.4.0]dec-5-ene (TBD) and 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP), as catalyst precursors, combined with benzyl alcohol or 1,3-propanediol acting both as a co-initiator and a chain transfer agent. For the first time, well-defined α-hydroxy-ω-alkoxyester and α,ω-dihydroxy telechelic acetal -functionalized homopolycarbonates were thus prepared with molar mass up to 70[thin space (1/6-em)]200 g mol−1. These polymers were characterized at the molecular (NMR , SEC ), thermal (DSC , TGA ) and mechanical levels, and compared to conventional PTMC. P(TMC(OMe)2) is a rigid and brittle polymer material (E = 3190 ± 70 MPa, εr = 9 ± 1%)

    Metal Triflates as Highly Stable and Active Catalysts for the "Immortal" Ring-Opening Polymerization of Trimethylene Carbonate

    No full text
    International audienceThe controlled "immortal" ring-opening polymerization of trimethylene carbonate (TMC) using a two-component catalyst system based on a metal Lewis acid, such as a metal triflate M(OTf)n(M=Ca, Sc, Zn, Al, Bi; OTf=CF3SO3−) or the metallic salt Fe(acac)3, (acac=acetylacetonate) and an alcohol (ROH) as co-initiator and chain-transfer agent, is carried out in bulk at 110-150 °C. As a result of the water-tolerance of these systems, experimental operating conditions do not require any special care. The approach, valorized both with various ROH transfer agents and with either purified or unpurified monomer sources, is highly versatile. Functional telechelic polycarbonates H[BOND]PTMC[BOND]OR, devoid of decarboxylation sequences, are obtained [PTMC=poly(trimethylene carbonate)]. The molar mass of the PTMCs can be readily predicted by a simple model, taking into account the [TMC]0/[ROH]0 ratio and the amount of transferring impurities present in the raw/unpurified reagents. Such simple, air- and moisture-robust catalytic systems, which display quite high activities (TOF up to 28 200 h−1) and productivities (TON up to 45 000) are thus extremely valuable, especially industrially. The performances of these systems are described in comparison to the previously established valuable inorganic and organometallic catalytic systems, namely metal amido complexes ([M{N(SiMe3)2}3]) and [(BDI)Zn{N(SiMe3)2}] (BDI=β-diiminate ligand) derivatives

    Macromolecular engineering via ring-opening polymerization (1): L-lactide/trimethylene carbonate block copolymers as thermoplastic elastomers

    No full text
    International audiencePoly(L-lactide) (PLLA) is often regarded as tough and brittle while poly(1,3-trimethylene carbonate) (PTMC) is rather considered as a rubbery polymer. In an effort to improve the mechanical properties - especially ductility - of PLLA and thus to widen its field of applications, PLLA-PTMC diblock and triblock copolymers were synthesized through the sequential copolymerization of both L-lactide (L-LA) and trimethylene carbonate (TMC) using several catalytic systems. This process can be effectively catalyzed by inherently different systems ranging from a simple basic organocatalyst such as an amine (i.e., 4-N,N-dimethylaminopyridine, DMAP) or a phosphazene (i.e., 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, BEMP), a simple Lewis acidic metallic salt such as aluminum triflate, or a more sophisticated discrete metallo-organic complex derived from a biofriendly metal, namely the β-diiminate zinc complex [(BDIiPr)Zn(N(SiMe3)2)] (BDI = CH(CMeNC6H3-2,6-iPr2)2), [(BDIiPr)Zn(N(SiMe3)2)]. Well-defined diblock PLLA-b-PTMC, triblock PLLA-b-PTMC-b-PLLA and 3-arm star GLY(PTMC-b-PLLA)3 copolymers with controlled molecular features, i.e. controlled functional end-groups and molar masses, rather narrow dispersity values, were thus prepared. The thermo-mechanical properties of the resulting copolymers revealed that a minimal block size of the PTMC and of the PLLA segments within the copolymer of Mn,PTMC = ca. 10 000 g mol−1 and Mn,PLLA = ca. 23 000 g mol−1 enables significant improvement of the elongation at break (εb) of PLLA up to 328%, while maintaining the Young's modulus (E = 2781 MPa) close to that of PLLA (E = 3427 MPa)

    Stereoselective Copolymerization of Styrene with Terpenes Catalyzed by an Ansa-Lanthanidocene Catalyst: Access to New Syndiotactic Polystyrene-Based Materials

    No full text
    The copolymerization of bio-renewable β-myrcene or β-farnesene with styrene was examined using an ansa-neodymocene catalyst, affording two series of copolymers with high styrene content and unprecedented syndioregularity of the polystyrene sequences. The incorporation of terpene in the copolymers ranged from 5.6 to 30.8 mol % (β-myrcene) and from 2.5 to 9.8 mol % (β-farnesene), respectively. NMR spectroscopy and DSC analyses suggested that the microstructure of the copolymers consists of 1,4- and 3,4-poly(terpene) units randomly distributed along syndiotactic polystyrene chains. The thermal properties of the copolymers are strongly dependent on the terpene content, which is easily controlled by the initial feed. The terpolymerization of styrene with β-myrcene in the presence of ethylene was also examined
    corecore