30 research outputs found

    Double layer propagation in experiments with electron beam injection

    Full text link
    Electron beam injection into a plasma is investigated using the analytical inverted Bernstein-Green-Kruskal method. Particle number and momentum conservation laws are applied to evaluate the propagation velocity and potential drop on the leading edge of the beam. Electric potential is supposed to be monotonic, thus the leading front has a double-layerlike structure. For the case of cold particles, analytical expressions for the double layer velocity and potential drop are obtained. It is pointed out that double layer velocity differs from the initial electron speed: even for weak beams a noticeable deceleration takes place. Strong beams are found incapable of penetrating into plasma--their propagation velocity is very small. Ambient electrons undergo a considerable acceleration forming a return current which neutralizes the injector. Possible instability of the distribution functions is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30940/1/0000610.pd

    Spatial and Wavenumber Resolution of Doppler Reflectometry

    Full text link
    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described. The possibility of Doppler reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114
    corecore