5,130 research outputs found

    Political Factors Involved in Development of a Proposal for National Licensing of CPAs

    Get PDF
    https://egrove.olemiss.edu/aicpa_assoc/1517/thumbnail.jp

    Institute Retrieval System, before Spring Meeting of Council May 1, 1972

    Get PDF
    https://egrove.olemiss.edu/aicpa_assoc/2042/thumbnail.jp

    Testimony by William C. Bruschi, AIPA Staff Vice President - Regulation

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1865/thumbnail.jp

    Freezing of Nonlinear Bloch Oscillations in the Generalized Discrete Nonlinear Schrodinger Equation

    Full text link
    The dynamics in a nonlinear Schrodinger chain in an homogeneous electric field is studied. We show that discrete translational invariant integrability-breaking terms can freeze the Bloch nonlinear oscillations and introduce new faster frequencies in their dynamics. These phenomena are studied by direct numerical integration and through an adiabatic approximation. The adiabatic approximation allows a description in terms of an effective potential that greatly clarifies the phenomenon.Comment: LaTeX, 7 pages, 6 figures. Improved version to appear in Phys. Rev.

    Institute\u27s Local Firm Quality Review Program

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2853/thumbnail.jp

    Quantum estimation of the Schwarzschild space-time parameters of the Earth

    Get PDF
    We propose a quantum experiment to measure with high precision the Schwarzschild space-time parameters of the Earth. The scheme can also be applied to measure distances by taking into account the curvature of the Earth's space-time. As a wave-packet of (entangled) light is sent from the Earth to a satellite it is red-shifted and deformed due to the curvature of space-time. Measurements after the propagation enable the estimation of the space-time parameters. We compare our results with the state of the art, which involves classical measurement methods, and discuss what developments are required in space-based quantum experiments to improve on the current measurement of the Schwarzschild radius of the Earth.Comment: 11 pages, no figures. Ivette Fuentes previously published as Ivette Fuentes-Guridi and Ivette Fuentes-Schulle

    Design and experimental assessment of a novel damper with high endurance to seismic loads

    Get PDF
    The study presents the design and the experimental characterization of a new energy dissipation device aimed at providing improved resistance to repeated seismic loads. Differently from conventional steel hysteretic dampers, which dissipate energy by yielding of a mild steel core and are noted to suffer low-cycle fatigue, the new damper provides energy dissipation by the friction that is activated between a moving shaft and a lead core prestressed within a tube. The prestress level is controlled during the assembling process, allowing to adjust the axial strength of the damper. Thanks to the ability of lead to restore its properties by static recrystallization taking place immediately after deformation, repeated cycles of loading do not produce damages that may accrue and eventually lead to failure of the device. Moreover, prestressing of the lead core allows to achieve high specific strength (i.e., high force to volume ratio), thereby providing low dimensions which help to reduce the architectural invasiveness. Prototypes of the damper were subjected to the test procedure established in the European standard EN 15129 for Displacement Dependent Devices, fulfilling the relevant requirements. The damper provides a robust and stable response over repeated cycles, characterized by essentially rectangular hysteresis loops with an equivalent viscous damping ratio ξeff of about 55%. Moreover, it shows low sensitivity of mechanical properties on the loading rate and the ability to withstand multiple cycles of motion at the design earthquake displacement without deterioration of performance, demonstrating maintenance-free operation in presence of repeated ground shakes. Its ability to survive several strong motions without being damaged, and its high damping capability coupled to a compact design and low manufacturing cost, are the distinctive features that make it suitable for social housing
    corecore