17 research outputs found

    Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine

    Get PDF
    An investigation aimed at a better understanding of the molecular adaptation mechanisms of salt stress was carried out in 7-d-old tomato Solanum lycopersicum (L.) Mill cultivars Patio and ā€˜F144ā€™, using a proteomic approach. Total proteins were extracted from radicles and hypocotyls collected from both non-saline control and salt-stressed seedlings, and separated by two-dimensional gel electrophoresis. Liqud chromatography-electron spray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified 23 salt stress response proteins, classified into six functional categories. The effect of exogenously applied glycinebetaine (GB) on the salt stress-induced inhibition of growth in tomato seedlings of cultivars Patio and ā€˜F144ā€™ and on the protein profile was investigated. It was found that GB could alleviate the inhibition of tomato growth induced by salt stress through changing the expression abundance of six proteins in Patio and two proteins in ā€˜F144ā€™ more than twice compared with salt-stressed seedlings. Furthermore, the interaction analysis based on computational bioinformatics reveals major regulating networks: photosystem II (PSII), Rubisco, and superoxide dismutase (SOD). The results suggest that it is likely that improvement of salt tolerance in tomato might be achieved through the application of exogenous compatible solutes, such as GB. Moreover, quantitative and qualitative analysis of the differentially expressed proteins of tomato under salt stress is an important step towards further elucidation of mechanisms of salt stress resistance

    Activity of Ribulose 1,5-Bisphosphate Carboxylase Oxygenase as a Function of Storage Conditions

    Full text link

    Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteomics is increasingly becoming an important tool for the study of many different aspects of plant functions, such as investigating the molecular processes underlying in plant physiology, development, differentiation and their interaction with the environments. To investigate the cassava (<it>Manihot esculenta </it>Crantz) proteome, we extracted proteins from somatic embryos, plantlets and tuberous roots of cultivar SC8 and separated them by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).</p> <p>Results</p> <p>Analysis by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) yielded a total of 383 proteins including isoforms, classified into 14 functional groups. The majority of these were carbohydrate and energy metabolism associated proteins (27.2%), followed by those involved in protein biosynthesis (14.4%). Subsequent analysis has revealed that 54, 59, 74 and 102 identified proteins are unique to the somatic embryos, shoots, adventitious roots and tuberous roots, respectively. Some of these proteins may serve as signatures for the physiological and developmental stages of somatic embryos, shoots, adventitious roots and tuberous root. Western blotting results have shown high expression levels of Rubisco in shoots and its absence in the somatic embryos. In addition, high-level expression of Ī±-tubulin was found in tuberous roots, and a low-level one in somatic embryos. This extensive study effectively provides a huge data set of dynamic protein-related information to better understand the molecular basis underlying cassava growth, development, and physiological functions.</p> <p>Conclusion</p> <p>This work paves the way towards a comprehensive, system-wide analysis of the cassava. Integration with transcriptomics, metabolomics and other large scale "-omics" data with systems biology approaches can open new avenues towards engineering cassava to enhance yields, improve nutritional value and overcome the problem of post-harvest physiological deterioration.</p
    corecore