39 research outputs found

    Promoting Patient Safety and Preventing Medical Error in Emergency Departments

    Full text link
    An estimated 108,000 people die each year from potentially preventable iatrogenic injury. One in 50 hospitalized patients experiences a preventable adverse event. Up to 3% of these injuries and events take place in emergency departments. With long and detailed training, morbidity and mortality conferences, and an emphasis on practitioner responsibility, medicine has traditionally faced the challenges of medical error and patient safety through an approach focused almost exclusively on individual practitioners. Yet no matter how well trained and how careful health care providers are, individuals will make mistakes because they are human. In general medicine, the study of adverse drug events has led the way to new methods of error detection and error prevention. A combination of chart reviews, incident logs, observation, and peer solicitation has provided a quantitative tool to demonstrate the effectiveness of interventions such as computer order entry and pharmacist order review. In emergency medicine (EM), error detection has focused on subjects of high liability: missed myocardial infarctions, missed appendicitis, and misreading of radiographs. Some system-level efforts in error prevention have focused on teamwork, on strengthening communication between pharmacists and emergency physicians, on automating drug dosing and distribution, and on rationalizing shifts. This article reviews the definitions, detection, and presentation of error in medicine and EM. Based on review of the current literature, recommendations are offered to enhance the likelihood of reduction of error in EM practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74930/1/j.1553-2712.2000.tb00466.x.pd

    N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson\u27s Disease: Preliminary Clinical and Cell Line Data.

    Get PDF
    BACKGOUND: The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson\u27s disease (PD). METHODS: The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson\u27s Disease Rating Scale (UPDRS) to measure clinical symptoms. RESULTS: The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p CONCLUSIONS: The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT02445651

    The functional anatomy of semantic retrieval is influenced by gender, menstrual cycle, and sex hormones

    Get PDF
    This study examines the neurobiology of semantic retrieval and describes the influence of gender, menstrual cycle, and sex hormones on semantic networks. Healthy right-handed subjects (12 men, 12 women) were investigated with 3T-fMRI during synonym generation. Behavioral performance and sex hormone levels were assessed. Women were examined during the early follicular and midluteal cycle phase. The activation pattern in all groups involved left frontal and temporal as well as bilateral medial frontal, cingulate, occipital, basal ganglia, and cerebellar regions. Men showed greater left frontal activation than women in both menstrual cycle phases. Women yielded high correlations of left prefrontal activation with estradiol in the midluteal phase and with progesterone in both phases. Testosterone levels correlated highly with left prefrontal activation in all three groups. In all, we describe a cerebral network involved in semantic processing and demonstrate that it is significantly affected by gender and sex steroid hormones
    corecore