5 research outputs found

    Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy

    No full text
    Petroleum is one of the most precious and complex molecular mixtures existing. Because of its chemical complexity, the solid component of crude oil, the asphaltenes, poses an exceptional challenge for structure analysis, with tremendous economic relevance. Here, we combine atomic-resolution imaging using atomic force microscopy and molecular orbital imaging using scanning tunnelling microscopy to study more than 100 asphaltene molecules. The complexity and range of asphaltene polycyclic aromatic hydrocarbons are established in detail. Identifying molecular structures provides a foundation to understand all aspects of petroleum science from colloidal structure and interfacial interactions to petroleum thermodynamics, enabling a first-principles approach to optimize resource utilization. Particularly, the findings contribute to a long-standing debate about asphaltene molecular architecture. Our technique constitutes a paradigm shift for the analysis of complex molecular mixtures, with possible applications in molecular electronics, organic light emitting diodes, and photovoltaic devices

    Efficient and Continuous Carrier-Envelope Phase Control for Terahertz Lightwave-Driven Scanning Probe Microscopy

    No full text
    The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 Ļ€ in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tipā€“sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pumpā€“probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales

    The Electric Field of CO Tips and Its Relevance for Atomic Force Microscopy

    No full text
    Metal tips decorated with CO molecules have paved the way for an impressively high resolution in atomic force microscopy (AFM). Although Pauli repulsion and the associated CO tilting play a dominant role at short distances, experiments on polar and metallic systems show that electrostatic interactions are necessary to understand the complex contrast observed and its distance evolution. Attempts to describe those interactions in terms of a single electrostatic dipole replacing the tip have led to contradictory statements about its nature and strength. Here, we solve this puzzle with a comprehensive experimental and theoretical characterization of the AFM contrast on Cl vacancies. Our model, based on density functional theory (DFT) calculations, reproduces the complex evolution of the contrast between both the Na cation and Cl anion sites, and the positively charged vacancy as a function of tip height, and highlights the key contribution of electrostatic interactions for tipā€“sample distances larger than 500 pm. For smaller separations, Pauli repulsion and the associated CO tilting start to dominate the contrast. The electrostatic field of the COā€“metal tip can be represented by the superposition of the fields from the metal tip and the CO molecule. The long-range behavior is defined by the metal tip that contributes the field of a dipole with its positive pole at the apex. At short-range, the CO exhibits an opposite field that prevails. The interplay of these fields, with opposite sign and rather different spatial extension, is crucial to describe the contrast evolution as a function of the tip height

    Spin-Stabilization by Coulomb Blockade in a Vanadium Dimer in WSe<sub>2</sub>

    No full text
    Charged dopants in 2D transition metal dichalcogenides (TMDs) have been associated with the formation of hydrogenic bound states, defect-bound trions, and gate-controlled magnetism. Charge-transfer at the TMDā€“substrate interface and the proximity to other charged defects can be used to regulate the occupation of the dopantā€™s energy levels. In this study, we examine vanadium-doped WSe2 monolayers on quasi-freestanding epitaxial graphene, by high-resolution scanning probe microscopy and ab initio calculations. Vanadium atoms substitute W atoms and adopt a negative charge state through charge donation from the graphene substrate. VWā€“1 dopants exhibit a series of occupied p-type defect states, accompanied by an intriguing electronic fine-structure that we attribute to hydrogenic states bound to the charged impurity. We systematically studied the hybridization in V dimers with different separations. For large dimer separations, the 2eā€“ charge state prevails, and the magnetic moment is quenched. However, the Coulomb blockade in the nearest-neighbor dimer configuration stabilizes a 1eā€“ charge state. The nearest-neighbor V-dimer exhibits an open-shell character for the frontier defect orbital, giving rise to a paramagnetic ground state. Our findings provide microscopic insights into the charge stabilization and many-body effects of single dopants and dopant pairs in a TMD host material

    Heavy Oil Based Mixtures of Different Origins and Treatments Studied by Atomic Force Microscopy

    No full text
    Heavy oil molecular mixtures were investigated on the basis of single molecules resolved by atomic force microscopy. The eight different samples analyzed include asphaltenes and other heavy oil fractions of different geographic/geologic origin and processing steps applied. The collected AFM data of individual molecules provide information about the molecular geometry, aromaticity, the content of nonhexagonal rings, typical types and locations of heterocycles, occurrence, length and connectivity of alkyl side chains, and ratio of archipelago- vs island-type architectures. Common and distinguishing structural motifs for the different samples could be identified. The measured size distributions and the degree of unsaturation by scanning probe microscopy is consistent with mass spectrometry data presented herein. The results obtained reveal the complexity, properties and specifics of heavy oil fractions with implications for upstream oil production and downstream oil processing. Moreover, the identified molecular structures form a basis for modeling geochemical oil formation processes
    corecore