48 research outputs found

    Cell-type specificity of regulatory elements identified by linker scanning mutagenesis in the promoter of the chicken lysozyme gene

    Get PDF
    The chicken lysozyme gene is constitutively expressed in macrophages, in oviduct cells its expression is controlled by steroid hormones, and in fibroblasts the gene is not expressed. A fusion gene consisting of promoter sequences of the lysozyme gene from –208 to +15 in front of the chloramphenicol acetyltransferase (CAT) coding region was more than 50 times less active in non-expressing cells as compared to expressing cells. In order to identify the element(s) responsible for this cell-type specificity 31 different linker scanning mutations were generated within this promoter fragment and analyzed by transient transfections in the three types of chicken cells mentioned above. Three mutation sensitive regions located around position –25, –100 and between –158 and –208 were detected in each cell type, however, several LS mutations displayed clear cell-type specific differences in their phenotypic effects. Interestingly, a few LS mutations led to an increase in promoter activity in fibroblasts suggesting that the corresponding wildtype sequences represent binding sites for negatively acting transcription factors

    A new method for constructing linker scanning mutants

    Get PDF
    A new procedure for the construction of linker scanning mutants is described. A plasmid containing the target DNA is randomly linearized and slightly shortened by a novel combination of established methods. After partial apurination with formic acid a specific nick or small gap is introduced at the apurinic site by exonuclease III, followed by nuclease S1 cleavage of the strand opposite the nick/gap. Synthetic linkers are ligated to the ends and plasmids having the linker inserted in the target DNA are enriched. Putative linker scanning mutants are identified by their topoisomer patterns after relaxation with topoisomerase I. This technique allows the distinction of plasmids differing in length by a single basepair. We have used this rapid and efficient strategy to generate a set of 32 linker scanning mutants covering the chicken lysozyme promoter from –208 to +1

    Reporter constructs with low background activity utilizing the cat gene

    Get PDF
    Reporter plasmids utilizing the cat gene for the analysis of promoter and enhancer sequences in vertebrate cells, were constructed. These plasmids minimize the background of transcription derived from cryptic promoters or cryptic regulatory elements within the vecto

    Gene Structure, cDNA Sequence, and mRNA Distribution

    Get PDF
    The rat HNF-3 (hepatocyte nuclear factor 3) gene family encodes three transcription factors known to be important in the regulation of gene expression in liver and lung. We have cloned and characterized the mouse genes and cDNAs for HNF-3α, β, and γ and analyzed their expression patterns in various adult tissues and mouse embryonic stages. The HNF-3 proteins are highly conserved between mouse and rat, with the exception of the amino terminus of HNF-3γ, which in mouse is more similar to those of HNF-3α and β than to the amino termini of the rat HNF-3γ protein. The mouse HNF-3 genes are small and contain only two or three (HNF-3β) exons with conserved intron-exon boundaries. The proximal promoter of the mouse HNF3β gene is remarkably similar to that of the previously cloned rat HNF-3β gene, but is different from the promoters of the HNF-3α and γ genes. The mRNA distribution of the mouse HNF-3 genes was analyzed by quantitative RNase protection with gene-specific probes. While HNF-3α and β are restricted mainly to endoderm-derived tissues (lung, liver, stomach, and small intestine), HNF-3γ is more extensively expressed, being present additionally in ovary, testis, heart, and adipose tissue, but missing from lung. Transcripts for HNF-3β and α are detected most abundantly in midgestation embryos (Day 9.5), while HNF-3γ expression peaks around Day 15.5 of gestation

    Phenotyping renal leukocyte subsets by four-color flow cytometry: Characterization of chemokine receptor expression

    Get PDF
    To investigate mechanisms of cell-mediated injury in renal inflammatory disease it is critical to determine the surface phenotype of infiltrating renal leukocyte subsets. However, the cell-specific expression of many leukocyte receptors is difficult to characterize in vivo. Here, we report a protocol based on flow cytometry that allows simultaneous characterization of surface receptor expression on different subsets of infiltrating renal leukocytes. The described technique combines an adapted method to prepare single cell suspensions from whole kidneys with subsequent four-color flow cytometry. We recently applied this technique to determine the differential expression of murine chemokine receptors CCR2 and CCR5 on infiltrating renal leukocyte subsets. In this article, we summarize our current findings on the validity of the method as compared with immunohistology and in situ hybridization in two murine models of nonimmune ( obstructive nephropathy) and immune-mediated ( lupus nephritis) inflammatory renal disease. Flow cytometry analysis revealed an accumulation of CCR5-, but not CCR2-positive lymphocytes in inflamed kidneys, compared to the peripheral blood. Particularly renal CD8(+) cells expressed CCR5 (79% in obstructed kidneys, 90% in lupus nephritis). In both models, infiltrating renal macrophages were positive for CCR2 and CCR5. These data corresponded to immunohistological and in situ hybridization results. They demonstrate that flow cytometric analysis of single cell suspensions prepared from inflamed kidneys is a rapid and reliable technique to characterize and quantify surface receptor expression on infiltrating renal leukocyte subsets

    Phosphorylation of CREB affects its binding to high and low affinity sites

    Get PDF
    Cyclic AMP treatment of hepatoma cells leads to increased protein binding at the cyclic AMP response element (CRE) of the tyrosine aminotransferase (TAT) gene in vivo, as revealed by genomic footprinting, whereas no increase is observed at the CRE of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Several criteria establish that the 43 kDa CREB protein is interacting with both of these sites. Two classes of CRE with different affinity for CREB are described. One class, including the TATCRE, is characterized by asymmetric and weak binding sites (CGTCA), whereas the second class containing symmetrical TGACGTCA sites shows a much higher binding affinity for CREB. Both classes show an increase in binding after phosphorylation of CREB by protein kinase A (PKA). An in vivo phosphorylation-dependent change in binding of CREB increases the occupancy of weak binding sites used for transactivation, such as the TATCRE, while high affinity sites may have constitutive binding of transcriptionally active and inactive CREB dimers, as demonstrated by in vivo footprinting at the PEPCK CRE. Thus, lower basal level and higher relative stimulation of transcription by cyclic AMP through low affinity CREs should result, allowing finely tuned control of gene activation

    Identification of new mutations in the adenylosuccinate lyase gene associated with impaired enzyme activity in lymphocytes and red blood cells

    Get PDF
    AbstractWe determined the DNA sequence of the adenylosuccinate lyase (ASL) gene from a 13 year-old female, who showed a reduced ASL enzymatic activity in lymphocytes and red blood cells and suffered from severe psychomotor retardation. The patient was the offspring of a non-consanguineous marriage. She was found to be compound heterozygous for two missense-mutations located on different alleles (C300–G and G1266–T): the first mutation replaces Pro75 by Ala, the second mutation replaces Asp397 by Tyr

    CFTR mRNA and its truncated splice variant (TRN-CFTR) are differentially expressed during collecting duct ontogeny

    Get PDF
    AbstractThe collecting duct epithelium originates from the embryonic ureter by branching morphogenesis. Ontogeny-dependent changes of CFTR mRNA expression were assessed by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in primary monolayer cultures of rat ureteric buds (UB) and cortical collecting ducts, microdissected at different embryonic and postnatal developmental stages. The amount of wild-type CFTR-specific PCR product in UB declined to 20% of the initial value between embryonic gestational day E15 and postnatal day P1. After birth the CFTR product increased transiently between P1 and P7 by a factor of 10 and decreased towards day P14. PCR products specific for TRN-CFTR, a truncated splice variant, however, were low in early embryonic cells, increased markedly between day E17 and P2, and reached a plateau postnatally. Therefore, mRNA encoding TRN-CFTR does not appear to have a specific embryonic-morphogenetic function. By contrast, such function is suggested for wild-type CFTR mRNA as its abundance was high in early embryonic nephrogenesis, as well as during a postnatal period shortly before branching morphogenesis is completed

    Phosphorylation of CREB affects its binding to high and low affinity sites

    Get PDF
    Cyclic AMP treatment of hepatoma cells leads to increased protein binding at the cyclic AMP response element (CRE) of the tyrosine aminotransferase (TAT) gene in vivo, as revealed by genomic footprinting, whereas no increase is observed at the CRE of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Several criteria establish that the 43 kDa CREB protein is interacting with both of these sites. Two classes of CRE with different affinity for CREB are described. One class, including the TATCRE, is characterized by asymmetric and weak binding sites (CGTCA), whereas the second class containing symmetrical TGACGTCA sites shows a much higher binding affinity for CREB. Both classes show an increase in binding after phosphorylation of CREB by protein kinase A (PKA). An in vivo phosphorylation-dependent change in binding of CREB increases the occupancy of weak binding sites used for transactivation, such as the TATCRE, while high affinity sites may have constitutive binding of transcriptionally active and inactive CREB dimers, as demonstrated by in vivo footprinting at the PEPCK CRE. Thus, lower basal level and higher relative stimulation of transcription by cyclic AMP through low affinity CREs should result, allowing finely tuned control of gene activation
    corecore