72 research outputs found

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    PEDIATRIC ANESTHESIA Principles And Practice

    No full text
    xi.1545 hal;27 c

    Syndromes Rapid Recognition and Perioperative Implications

    No full text

    Syndromes : Rapid recognition and perioperative implications

    No full text
    xv, 953 hlm.: ill.; 29 c

    Reply

    No full text

    Duchenne muscular dystrophy: an old anesthesia problem revisited

    No full text
    Patients with Duchenne and Becker muscular dystrophy suffer from a progressive deterioration in muscle secondary to a defect in the dystrophin gene. As such, they are susceptible to perioperative respiratory, cardiac and other complications, such as rhabdomyolysis. Inhalational anesthetic agents have been implicated as a cause of acute rhabdomyolysis that can resemble malignant hyperthermia (MH). This article reviews perioperative 'MH-like' reactions reported in muscular dystrophy patients and groups them into three categories according to clinical presentation. The etiology and underlying pathophysiological process responsible for these reactions is discussed and recommendations are proposed for the safe anesthetic management of these patients

    Erratum

    No full text

    Rhabdomyolysis and anesthesia

    No full text
    corecore