416 research outputs found

    Do Linguistic Style and Readability of Scientific Abstracts affect their Virality?

    Full text link
    Reactions to textual content posted in an online social network show different dynamics depending on the linguistic style and readability of the submitted content. Do similar dynamics exist for responses to scientific articles? Our intuition, supported by previous research, suggests that the success of a scientific article depends on its content, rather than on its linguistic style. In this article, we examine a corpus of scientific abstracts and three forms of associated reactions: article downloads, citations, and bookmarks. Through a class-based psycholinguistic analysis and readability indices tests, we show that certain stylistic and readability features of abstracts clearly concur in determining the success and viral capability of a scientific article.Comment: Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (ICWSM 2012), 4-8 June 2012, Dublin, Irelan

    Automatic Prediction Of Small Group Performance In Information Sharing Tasks

    Get PDF
    In this paper, we describe a novel approach, based on Markov jump processes, to model small group conversational dynamics and to predict small group performance. More precisely, we estimate conversational events such as turn taking, backchannels, turn-transitions at the micro-level (1 minute windows) and then we bridge the micro-level behavior and the macro-level performance. We tested our approach with a cooperative task, the Information Sharing task, and we verified the relevance of micro- level interaction dynamics in determining a good group performance (e.g. higher speaking turns rate and more balanced participation among group members).Comment: Presented at Collective Intelligence conference, 2012 (arXiv:1204.2991

    PocketCare: Tracking the Flu with Mobile Phones using Partial Observations of Proximity and Symptoms

    Full text link
    Mobile phones provide a powerful sensing platform that researchers may adopt to understand proximity interactions among people and the diffusion, through these interactions, of diseases, behaviors, and opinions. However, it remains a challenge to track the proximity-based interactions of a whole community and then model the social diffusion of diseases and behaviors starting from the observations of a small fraction of the volunteer population. In this paper, we propose a novel approach that tries to connect together these sparse observations using a model of how individuals interact with each other and how social interactions happen in terms of a sequence of proximity interactions. We apply our approach to track the spreading of flu in the spatial-proximity network of a 3000-people university campus by mobilizing 300 volunteers from this population to monitor nearby mobile phones through Bluetooth scanning and to daily report flu symptoms about and around them. Our aim is to predict the likelihood for an individual to get flu based on how often her/his daily routine intersects with those of the volunteers. Thus, we use the daily routines of the volunteers to build a model of the volunteers as well as of the non-volunteers. Our results show that we can predict flu infection two weeks ahead of time with an average precision from 0.24 to 0.35 depending on the amount of information. This precision is six to nine times higher than with a random guess model. At the population level, we can predict infectious population in a two-week window with an r-squared value of 0.95 (a random-guess model obtains an r-squared value of 0.2). These results point to an innovative approach for tracking individuals who have interacted with people showing symptoms, allowing us to warn those in danger of infection and to inform health researchers about the progression of contact-induced diseases

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Weak nodes detection in urban transport systems: Planning for resilience in Singapore

    Full text link
    The availability of massive data-sets describing human mobility offers the possibility to design simulation tools to monitor and improve the resilience of transport systems in response to traumatic events such as natural and man-made disasters (e.g. floods terroristic attacks, etc...). In this perspective, we propose ACHILLES, an application to model people's movements in a given transport system mode through a multiplex network representation based on mobility data. ACHILLES is a web-based application which provides an easy-to-use interface to explore the mobility fluxes and the connectivity of every urban zone in a city, as well as to visualize changes in the transport system resulting from the addition or removal of transport modes, urban zones, and single stops. Notably, our application allows the user to assess the overall resilience of the transport network by identifying its weakest node, i.e. Urban Achilles Heel, with reference to the ancient Greek mythology. To demonstrate the impact of ACHILLES for humanitarian aid we consider its application to a real-world scenario by exploring human mobility in Singapore in response to flood prevention.Comment: 9 pages, 6 figures, IEEE Data Science and Advanced Analytic

    Rethinking the Learning Paradigm for Facial Expression Recognition

    Full text link
    Due to the subjective crowdsourcing annotations and the inherent inter-class similarity of facial expressions, the real-world Facial Expression Recognition (FER) datasets usually exhibit ambiguous annotation. To simplify the learning paradigm, most previous methods convert ambiguous annotation results into precise one-hot annotations and train FER models in an end-to-end supervised manner. In this paper, we rethink the existing training paradigm and propose that it is better to use weakly supervised strategies to train FER models with original ambiguous annotation

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin
    • …
    corecore