12,649 research outputs found
High-order integral equation methods for problems of scattering by bumps and cavities on half-planes
This paper presents high-order integral equation methods for evaluation of
electromagnetic wave scattering by dielectric bumps and dielectric cavities on
perfectly conducting or dielectric half-planes. In detail, the algorithms
introduced in this paper apply to eight classical scattering problems, namely:
scattering by a dielectric bump on a perfectly conducting or a dielectric
half-plane, and scattering by a filled, overfilled or void dielectric cavity on
a perfectly conducting or a dielectric half-plane. In all cases field
representations based on single-layer potentials for appropriately chosen Green
functions are used. The numerical far fields and near fields exhibit excellent
convergence as discretizations are refined--even at and around points where
singular fields and infinite currents exist.Comment: 25 pages, 7 figure
Windowed Green Function Method for Nonuniform Open-Waveguide Problems
This contribution presents a novel Windowed Green Function (WGF) method for
the solution of problems of wave propagation, scattering and radiation for
structures which include open (dielectric) waveguides, waveguide junctions, as
well as launching and/or termination sites and other nonuniformities. Based on
use of a "slow-rise" smooth-windowing technique in conjunction with free-space
Green functions and associated integral representations, the proposed approach
produces numerical solutions with errors that decrease faster than any negative
power of the window size. The proposed methodology bypasses some of the most
significant challenges associated with waveguide simulation. In particular the
WGF approach handles spatially-infinite dielectric waveguide structures without
recourse to absorbing boundary conditions, it facilitates proper treatment of
complex geometries, and it seamlessly incorporates the open-waveguide character
and associated radiation conditions inherent in the problem under
consideration. The overall WGF approach is demonstrated in this paper by means
of a variety of numerical results for two-dimensional open-waveguide
termination, launching and junction problems.Comment: 16 Page
Spike trains statistics in Integrate and Fire Models: exact results
We briefly review and highlight the consequences of rigorous and exact
results obtained in \cite{cessac:10}, characterizing the statistics of spike
trains in a network of leaky Integrate-and-Fire neurons, where time is discrete
and where neurons are subject to noise, without restriction on the synaptic
weights connectivity. The main result is that spike trains statistics are
characterized by a Gibbs distribution, whose potential is explicitly
computable. This establishes, on one hand, a rigorous ground for the current
investigations attempting to characterize real spike trains data with Gibbs
distributions, such as the Ising-like distribution, using the maximal entropy
principle. However, it transpires from the present analysis that the Ising
model might be a rather weak approximation. Indeed, the Gibbs potential (the
formal "Hamiltonian") is the log of the so-called "conditional intensity" (the
probability that a neuron fires given the past of the whole network). But, in
the present example, this probability has an infinite memory, and the
corresponding process is non-Markovian (resp. the Gibbs potential has infinite
range). Moreover, causality implies that the conditional intensity does not
depend on the state of the neurons at the \textit{same time}, ruling out the
Ising model as a candidate for an exact characterization of spike trains
statistics. However, Markovian approximations can be proposed whose degree of
approximation can be rigorously controlled. In this setting, Ising model
appears as the "next step" after the Bernoulli model (independent neurons)
since it introduces spatial pairwise correlations, but not time correlations.
The range of validity of this approximation is discussed together with possible
approaches allowing to introduce time correlations, with algorithmic
extensions.Comment: 6 pages, submitted to conference NeuroComp2010
http://2010.neurocomp.fr/; Bruno Cessac
http://www-sop.inria.fr/neuromathcomp
Windowed Green Function method for layered-media scattering
This paper introduces a new Windowed Green Function (WGF) method for the
numerical integral-equation solution of problems of electromagnetic scattering
by obstacles in presence of dielectric or conducting half-planes. The WGF
method, which is based on use of smooth windowing functions and integral
kernels that can be expressed directly in terms of the free-space Green
function, does not require evaluation of expensive Sommerfeld integrals. The
proposed approach is fast, accurate, flexible and easy to implement. In
particular, straightforward modifications of existing (accelerated or
unaccelerated) solvers suffice to incorporate the WGF capability. The
mathematical basis of the method is simple: the method relies on a certain
integral equation posed on the union of the boundary of the obstacle and a
small flat section of the interface between the penetrable media. Numerical
experiments demonstrate that both the near- and far-field errors resulting from
the proposed approach decrease faster than any negative power of the window
size. In the examples considered in this paper the proposed method is up to
thousands of times faster, for a given accuracy, than a corresponding method
based on the layer-Green-function.Comment: 17 page
Online Data Reduction for the Belle II Experiment using DATCON
The new Belle II experiment at the asymmetric accelerator SuperKEKB
at KEK in Japan is designed to deliver a peak luminosity of
. To perform high-precision track
reconstruction, e.g. for measurements of time-dependent CP-violating decays and
secondary vertices, the Belle II detector is equipped with a highly segmented
pixel detector (PXD). The high instantaneous luminosity and short bunch
crossing times result in a large stream of data in the PXD, which needs to be
significantly reduced for offline storage. The data reduction is performed
using an FPGA-based Data Acquisition Tracking and Concentrator Online Node
(DATCON), which uses information from the Belle II silicon strip vertex
detector (SVD) surrounding the PXD to carry out online track reconstruction,
extrapolation to the PXD, and Region of Interest (ROI) determination on the
PXD. The data stream is reduced by a factor of ten with an ROI finding
efficiency of >90% for PXD hits inside the ROI down to 50 MeV in
of the stable particles. We will present the current status of the
implementation of the track reconstruction using Hough transformations, and the
results obtained for simulated \Upsilon(4S) events
General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests
We present a new numerical implementation of the general-relativistic
resistive magnetohydrodynamics (MHD) equations within the Whisky code. The
numerical method adopted exploits the properties of implicit-explicit
Runge-Kutta numerical schemes to treat the stiff terms that appear in the
equations for large electrical conductivities. Using tests in one, two, and
three dimensions, we show that our implementation is robust and recovers the
ideal-MHD limit in regimes of very high conductivity. Moreover, the results
illustrate that the code is capable of describing scenarios in a very wide
range of conductivities. In addition to tests in flat spacetime, we report
simulations of magnetized nonrotating relativistic stars, both in the Cowling
approximation and in dynamical spacetimes. Finally, because of its
astrophysical relevance and because it provides a severe testbed for
general-relativistic codes with dynamical electromagnetic fields, we study the
collapse of a nonrotating star to a black hole. We show that also in this case
our results on the quasinormal mode frequencies of the excited electromagnetic
fields in the Schwarzschild background agree with the perturbative studies
within 0.7% and 5.6% for the real and the imaginary part of the l=1 mode
eigenfrequency, respectively. Finally we provide an estimate of the
electromagnetic efficiency of this process.Comment: 22 pages, 19 figure
- …