7,810 research outputs found

    Attractor Flows from Defect Lines

    Full text link
    Deforming a two dimensional conformal field theory on one side of a trivial defect line gives rise to a defect separating the original theory from its deformation. The Casimir force between these defects and other defect lines or boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns out, that these flows are constant reparametrizations of gradient flows of the g-functions of the chosen defect or boundary condition. The special flows associated to supersymmetric boundary conditions in N=(2,2) superconformal field theories agree with the attractor flows studied in the context of black holes in N=2 supergravity.Comment: 28 page

    Permutation branes and linear matrix factorisations

    Full text link
    All the known rational boundary states for Gepner models can be regarded as permutation branes. On general grounds, one expects that topological branes in Gepner models can be encoded as matrix factorisations of the corresponding Landau-Ginzburg potentials. In this paper we identify the matrix factorisations associated to arbitrary B-type permutation branes.Comment: 43 pages. v2: References adde

    D-brane superpotentials and RG flows on the quintic

    Full text link
    The behaviour of D2-branes on the quintic under complex structure deformations is analysed by combining Landau-Ginzburg techniques with methods from conformal field theory. It is shown that the boundary renormalisation group flow induced by the bulk deformations is realised as a gradient flow of the effective space time superpotential which is calculated explicitly to all orders in the boundary coupling constant.Comment: 24 pages, 1 figure, v2:Typo in (3.14) correcte

    Moduli Webs and Superpotentials for Five-Branes

    Get PDF
    We investigate the one-parameter Calabi-Yau models and identify families of D5-branes which are associated to lines embedded in these manifolds. The moduli spaces are given by sets of Riemann curves, which form a web whose intersection points are described by permutation branes. We arrive at a geometric interpretation for bulk-boundary correlators as holomorphic differentials on the moduli space and use this to compute effective open-closed superpotentials to all orders in the open string couplings. The fixed points of D5-brane moduli under bulk deformations are determined.Comment: 41 pages, 1 figur

    A quantum McKay correspondence for fractional 2p-branes on LG orbifolds

    Full text link
    We study fractional 2p-branes and their intersection numbers in non-compact orbifolds as well the continuation of these objects in Kahler moduli space to coherent sheaves in the corresponding smooth non-compact Calabi-Yau manifolds. We show that the restriction of these objects to compact Calabi-Yau hypersurfaces gives the new fractional branes in LG orbifolds constructed by Ashok et. al. in hep-th/0401135. We thus demonstrate the equivalence of the B-type branes corresponding to linear boundary conditions in LG orbifolds, originally constructed in hep-th/9907131, to a subset of those constructed in LG orbifolds using boundary fermions and matrix factorization of the world-sheet superpotential. The relationship between the coherent sheaves corresponding to the fractional two-branes leads to a generalization of the McKay correspondence that we call the quantum McKay correspondence due to a close parallel with the construction of branes on non-supersymmetric orbifolds. We also provide evidence that the boundary states associated to these branes in a conformal field theory description corresponds to a sub-class of the boundary states associated to the permutation branes in the Gepner model associated with the LG orbifold.Comment: LaTeX2e, 1+39 pages, 3 figures (v2) refs added, typos and report no. correcte

    Colloidal ionic complexes on periodic substrates: ground state configurations and pattern switching

    Full text link
    We theoretically and numerically studied ordering of "colloidal ionic clusters" on periodic substrate potentials as those generated by optical trapping. Each cluster consists of three charged spherical colloids: two negatively and one positively charged. The substrate is a square or rectangular array of traps, each confining one such cluster. By varying the lattice constant from large to small, the observed clusters are first rod-like and form ferro- and antiferro-like phases, then they bend into a banana-like shape and finally condense into a percolated structure. Remarkably, in a broad parameter range between single-cluster and percolated structures, we have found stable supercomplexes composed of six colloids forming grape-like or rocket-like structures. We investigated the possibility of macroscopic pattern switching by applying external electrical fields.Comment: 14 pages, 13 figure

    Direct measurement of superluminal group velocity and of signal velocity in an optical fiber

    Full text link
    We present an easy way of observing superluminal group velocities using a birefringent optical fiber and other standard devices. In the theoretical analysis, we show that the optical properties of the setup can be described using the notion of "weak value". The experiment shows that the group velocity can indeed exceed c in the fiber; and we report the first direct observation of the so-called "signal velocity", the speed at which information propagates and that cannot exceed c.Comment: 5 pages, 5 figure

    Integrability of the N=2 boundary sine-Gordon model

    Full text link
    We construct a boundary Lagrangian for the N=2 supersymmetric sine-Gordon model which preserves (B-type) supersymmetry and integrability to all orders in the bulk coupling constant g. The supersymmetry constraint is expressed in terms of matrix factorisations.Comment: LaTeX, 19 pages, no figures; v2: title changed, minor improvements, refs added, to appear in J. Phys. A: Math. Ge

    The matrix factorisations of the D-model

    Full text link
    The fundamental matrix factorisations of the D-model superpotential are found and identified with the boundary states of the corresponding conformal field theory. The analysis is performed for both GSO-projections. We also comment on the relation of this analysis to the theory of surface singularities and their orbifold description.Comment: 23 pages, LaTe

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a WĂ—HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • …
    corecore