10,087 research outputs found
Attractor Flows from Defect Lines
Deforming a two dimensional conformal field theory on one side of a trivial
defect line gives rise to a defect separating the original theory from its
deformation. The Casimir force between these defects and other defect lines or
boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns
out, that these flows are constant reparametrizations of gradient flows of the
g-functions of the chosen defect or boundary condition. The special flows
associated to supersymmetric boundary conditions in N=(2,2) superconformal
field theories agree with the attractor flows studied in the context of black
holes in N=2 supergravity.Comment: 28 page
Experimental Quantum Teleportation with a 3-Bell-state Analyzer
We present a Bell-state analyzer for time-bin qubits allowing the detection
of three out of four Bell-states with linear optics, two detectors and no
auxiliary photons. The theoretical success rate of this scheme is 50%. A
teleportation experiment was performed to demonstrate its functionality. We
also present a teleportation experiment with a Fidelity larger than the cloning
limit of F=5/6.Comment: 11 pages, 14 figure
Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality
The dynamics of electron-plasma waves are described at arbitrary
collisionality by considering the full Coulomb collision operator. The
description is based on a Hermite-Laguerre decomposition of the velocity
dependence of the electron distribution function. The damping rate, frequency,
and eigenmode spectrum of electron-plasma waves are found as functions of the
collision frequency and wavelength. A comparison is made between the
collisionless Landau damping limit, the Lenard-Bernstein and Dougherty
collision operators, and the electron-ion collision operator, finding large
deviations in the damping rates and eigenmode spectra. A purely damped entropy
mode, characteristic of a plasma where pitch-angle scattering effects are
dominant with respect to collisionless effects, is shown to emerge numerically,
and its dispersion relation is analytically derived. It is shown that such a
mode is absent when simplified collision operators are used, and that
like-particle collisions strongly influence the damping rate of the entropy
mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma
Physic
The smallest refrigerators can reach maximal efficiency
We investigate whether size imposes a fundamental constraint on the
efficiency of small thermal machines. We analyse in detail a model of a small
self-contained refrigerator consisting of three qubits. We show analytically
that this system can reach the Carnot efficiency, thus demonstrating that there
exists no complementarity between size and efficiency.Comment: 9 pages, 1 figure. v2: published versio
- …