134 research outputs found

    The shape of high order correlation functions in CMB anisotropy maps

    Get PDF
    We present a phenomenological investigation of non-Gaussian effects that could be seen on CMB temperature maps. Explicit expressions for the temperature correlation functions are given for different types of primordial mode couplings. We argue that a simplified description of the radial transfer function for the temperature anisotropies allows to get insights into the general properties of the bi and tri-spectra. The accuracy of these results is explored together with the use of the small scale approximation to get explicit expressions of high order spectra. The bi-spectrum is found to have alternate signs for the successive acoustic peaks. Sign patterns for the trispectra are more complicated and depend specifically on the type of metric couplings. Local primordial couplings are found to give patterns that are different from those expected from weak lensing effects.Comment: 31 pages, 17 figures, submitted to Phys. Rev.

    Solving the Effective Field Equations for the Newtonian Potential

    Full text link
    Loop corrections to the gravitational potential are usually inferred from scattering amplitudes, which seems quite different from how the linearized Einstein equations are solved with a static, point mass to give the classical potential. In this study we show how the Schwinger-Keldysh effective field equations can be used to compute loop corrections to the potential in a way which parallels the classical treatment. We derive explicit results for the one loop correction from the graviton self-energy induced by a massless, minimally coupled scalar.Comment: 15 pages, uses LaTeX2

    A new diagrammatic representation for correlation functions in the in-in formalism

    Get PDF
    In this paper we provide an alternative method to compute correlation functions in the in-in formalism, with a modified set of Feynman rules to compute loop corrections. The diagrammatic expansion is based on an iterative solution of the equation of motion for the quantum operators with only retarded propagators, which makes each diagram intrinsically local (whereas in the standard case locality is the result of several cancellations) and endowed with a straightforward physical interpretation. While the final result is strictly equivalent, as a bonus the formulation presented here also contains less graphs than other diagrammatic approaches to in-in correlation functions. Our method is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version of axodraw.sty that works with the Revtex4 clas

    K-essential Phantom Energy: Doomsday around the Corner? Revisited

    Full text link
    We generalize some of those results reported by Gonz\'{a}lez-D\'{i}az by further tuning the parameter (β\beta) which is closely related to the canonical kinetic term in kk-essence formalism. The scale factor a(t)a(t) could be negative and decreasing within a specific range of β\beta (1/ω\equiv -1/\omega, ω\omega : the equation-of-state parameter) during the initial evolutional period.Comment: 1 Figure, 6 page

    La Sierra de Oca, pres Miranda de Ebro [Material gráfico]

    Get PDF
    Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 2010-201

    High order correlation functions for self interacting scalar field in de Sitter space

    Full text link
    We present the expressions of the three- and four-point correlation functions of a self interacting light scalar field in a de Sitter spacetime at tree order respectively for a cubic and a quartic potential. Exact expressions are derived and their limiting behaviour on super-horizon scales are presented. Their essential features are shown to be similar to those obtained in a classical approach.Comment: 8 pages, 4 figure

    The Fermion Self-Energy during Inflation

    Full text link
    We compute the one loop fermion self-energy for massless Dirac + Einstein in the presence of a locally de Sitter background. We employ dimensional regularization and obtain a fully renormalized result by absorbing all divergences with BPHZ counterterms. An interesting technical aspect of this computation is the need for a noninvariant counterterm owing to the breaking of de Sitter invariance by our gauge condition. Our result can be used in the quantum-corrected Dirac equation to search for inflation-enhanced quantum effects from gravitons, analogous to those which have been found for massless, minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised version (to appear in Classical and Quantum Gravity) corrects some typoes and contains some new reference

    A Simple Operator Check of the Effective Fermion Mode Function during Inflation

    Full text link
    We present a relatively simple operator formalism which reproduces the leading infrared logarithm of the one loop quantum gravitational correction to the fermion mode function on a locally de Sitter background. This rule may serve as the basis for an eventual stochastic formulation of quantum gravity during inflation. Such a formalism would not only effect a vast simplification in obtaining the leading powers of ln(a)\ln(a) at fixed loop orders, it would also permit us to sum the series of leading logarithms. A potentially important point is that our rule does not seem to be consistent with any simple infrared truncation of the fields. Our analysis also highlights the importance of spin as a gravitational interaction that persists even when kinetic energy has redshifted to zero.Comment: 39 pages, no figuire.(1) New version has clarified the ultimate motivation by adding sentences to the abstract and to the penultimate paragraph of the introduction. (2) By combining a number of references and equations we have managed to reduce the length by 2 page

    Possible Enhancement of High Frequency Gravitational Waves

    Full text link
    We study the tensor perturbations in a class of non-local, purely gravitational models which naturally end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition. We find the usual generic form for the tensor power spectrum. The presence of the oscillatory phase leads to an enhancement of gravitational waves with frequencies somewhat less than 10^{10} Hz.Comment: 27 pages, 11 figures, LaTeX.2

    Two Loop Scalar Bilinears for Inflationary SQED

    Get PDF
    We evaluate the one and two loop contributions to the expectation values of two coincident and gauge invariant scalar bilinears in the theory of massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. One of these bilinears is the product of two covariantly differentiated scalars, the other is the product of two undifferentiated scalars. The computations are done using dimensional regularization and the Schwinger-Keldysh formalism. Our results are in perfect agreement with the stochastic predictions at this order.Comment: 43 pages, LaTeX 2epsilon, 5 figures (using axodraw.sty) Version 2 has updated references and important corrections to Tables 3-5 and to eqns (139-141), (145-146), (153-155), (158) and (160
    corecore