193 research outputs found

    Dynamics of a lattice Universe

    Get PDF
    We find a solution to Einstein field equations for a regular toroidal lattice of size L with equal masses M at the centre of each cell; this solution is exact at order M/L. Such a solution is convenient to study the dynamics of an assembly of galaxy-like objects. We find that the solution is expanding (or contracting) in exactly the same way as the solution of a Friedman-Lema\^itre-Robertson-Walker Universe with dust having the same average density as our model. This points towards the absence of backreaction in a Universe filled with an infinite number of objects, and this validates the fluid approximation, as far as dynamics is concerned, and at the level of approximation considered in this work.Comment: 14 pages. No figure. Accepted version for Classical and Quantum Gravit

    Observables in a lattice Universe

    Get PDF
    We explore observables in a lattice Universe described by a recently found solution to Einstein field equations. This solution models a regular lattice of evenly distributed objects of equal masses. This inhomogeneous solution is perturbative, and, up to second order in a small parameter, it expands at a rate exactly equal to the one expected in a dust dominated Friedmann-Lema\^itre-Robertson-Walker (FLRW) model with the equivalent, smoothed, energy density. Therefore, the kinematics of both cosmologies are identical up to the order of perturbation studied. Looking at the behaviour of the redshift and angular distance, we find a condition on the compactness of the objects at the centre of each cell under which corrections to the FLRW observables remain small, i.e. of order of a few percents at most. Nevertheless, we show that, if this condition is violated, i.e. if the objects are too compact, our perturbative scheme breaks down as far as the calculations of observables are concerned, even though the kinematics of the lattice remains identical to its FLRW counter-part (at the perturbative order considered). This may be an indication of an actual fitting problem, i.e. a situation in which the FLRW model obtained from lightcone observables does not correspond to the FLRW model obtained by smoothing the spatial distribution of matter. Fully non-perturbative treatments of the observables will be necessary to answer that question.Comment: 23 pages, 4 figures. Replaced to matched version accepted in Class. Quantum Grav. Results unchanged but interpretation clarifie

    Gravitational anomalies signaling the breakdown of classical gravity

    Full text link
    Recent observations for three types of astrophysical systems severely challenge the GR plus dark matter scenario, showing a phenomenology which is what modified gravity theories predict. Stellar kinematics in the outskirts of globular clusters show the appearance of MOND type dynamics on crossing the a0a_{0} threshold. Analysis shows a ``Tully-Fisher'' relation in these systems, a scaling of dispersion velocities with the fourth root of their masses. Secondly, an anomaly has been found at the unexpected scales of wide binaries in the solar neighbourhood. Binary orbital velocities cease to fall along Keplerian expectations, and settle at a constant value, exactly on crossing the a0a_{0} threshold. Finally, the inferred infall velocity of the bullet cluster is inconsistent with the standard cosmological scenario, where much smaller limit encounter velocities appear. This stems from the escape velocity limit present in standard gravity; the ``bullet'' should not hit the ``target'' at more than the escape velocity of the joint system, as it very clearly did. These results are consistent with extended gravity, but would require rather contrived explanations under GR, each. Thus, observations now put us in a situation where modifications to gravity at low acceleration scales cease to be a matter of choice, to now become inevitable.Comment: 10 pages, 5 figures, Astrophysics and Space Science Proceedings 38, 4

    Pure kinetic k-essence as the cosmic speed-up

    Full text link
    In this paper, we consider three types of k-essence. These k-essence models were presented in the parametric forms. The exact analytical solutions of the corresponding equations of motion are found. It is shown that these k-essence models for the presented solutions can give rise to cosmic acceleration.Comment: 10 pages, typos corrected, main results remain the same, minor changes to match IJTP accepted versio

    Non-minimally coupled dark matter: effective pressure and structure formation

    Full text link
    We propose a phenomenological model in which a non-minimal coupling between gravity and dark matter is present in order to address some of the apparent small scales issues of \lcdm model. When described in a frame in which gravity dynamics is given by the standard Einstein-Hilbert action, the non-minimal coupling translates into an effective pressure for the dark matter component. We consider some phenomenological examples and describe both background and linear perturbations. We show that the presence of an effective pressure may lead these scenarios to differ from \lcdm at the scales where the non-minimal coupling (and therefore the pressure) is active. In particular two effects are present: a pressure term for the dark matter component that is able to reduce the growth of structures at galactic scales, possibly reconciling simulations and observations; an effective interaction term between dark matter and baryons that could explain observed correlations between the two components of the cosmic fluid within Tully-Fisher analysis.Comment: 18 pages, 6 figures, references added. Published in JCA
    • 

    corecore