176 research outputs found

    Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients

    Get PDF
    COVID-19, the illness caused by infection with the novel coronavirus SARS-CoV-2, is a rapidly spreading global pandemic in urgent need of effective treatments. Here we present a comprehensive examination of the host- and virus-targeted functions of the flavonolignan silibinin, a potential drug candidate against COVID-19/SARS-CoV-2. As a direct inhibitor of STAT3-a master checkpoint regulator of inflammatory cytokine signaling and immune response-silibinin might be expected to phenotypically integrate the mechanisms of action of IL-6-targeted monoclonal antibodies and pan-JAK1/2 inhibitors to limit the cytokine storm and T-cell lymphopenia in the clinical setting of severe COVID-19. As a computationally predicted, remdesivir-like inhibitor of RNA-dependent RNA polymerase (RdRp)-the central component of the replication/transcription machinery of SARS-CoV-2-silibinin is expected to reduce viral load and impede delayed interferon responses. The dual ability of silibinin to target both the host cytokine storm and the virus replication machinery provides a strong rationale for the clinical testing of silibinin against the COVID-19 global public health emergency. A randomized, open-label, phase II multicentric clinical trial (SIL-COVID19) will evaluate the therapeutic efficacy of silibinin in the prevention of acute respiratory distress syndrome in moderate-to-severe COVID-19-positive onco-hematological patients at the Catalan Institute of Oncology in Catalonia, Spain

    Evaluation of CNV detection tools for NGS panel data in genetic diagnostics

    Get PDF
    Although germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets (two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR

    NTHL1 biallelic mutations seldom cause colorectal cancer, serrated polyposis or a multi-tumor phenotype, in absence of colorectal adenomas

    Get PDF
    In 2015 Weren et al. described a hereditary cancer syndrome caused by biallelic mutations in the DNA base excision repair gene NTHL1, characterized by attenuated adenomatous polyposis and increased colorectal cancer (CRC) risk, largely resembling the recessive syndrome caused by MUTYH mutations1. To date, 33 homozygous or compound heterozygous NTHL1 mutation carriers have been reported (21 families)1,2,3,4,5,6,7,8. More than 5 colonic adenomas (range: 6 to >50) were identified in 24 of the 28 (85%) mutation carriers who underwent colonoscopy screening, and CRC was diagnosed in 19 (68%) of them. Noteworthy, 17 carriers (57%) were diagnosed with multiple primary malignant tumors in extracolonic locations, being the most recurrently found breast and endometrial tumors, head neck squamous cell carcimomas, meningiomas, and bladder and basal cell carcinomas, suggesting that the NTHL1-associated syndrome is a multi-tumor disease rather than a solely CRC syndrome. On the other hand, the fact that at least ¼ (7/28) of the reported biallelic mutation carriers who underwent colonoscopy screening had ≤10 adenomas, and that ≥5 hyperplastic polyps were detected in five carriers (polyp number range: 5->30), lead us to suspect a possible association of NTHL1 mutations with nonpolyposis CRC and serrated/hyperplastic polyposis. Based on previous evidence and with the aim of refining the phenotypic characteristics of the NTHL1-associated syndrome, here we evaluated the implication of NTHL1 biallelic mutations in the predisposition to personal or familial history of multiple tumor types, familial/early-onset nonpolyposis CRC, and serrated/hyperplastic polyposis

    Metformin induces a fasting- and antifolate-mimicking modification of systemic host metabolism in breast cancer patients

    Get PDF
    Certain dietary interventions might improve the therapeutic index of cancer treatments. An alternative to the "drug plus diet" approach is the pharmacological reproduction of the metabolic traits of such diets. Here we explored the impact of adding metformin to an established therapeutic regimen on the systemic host metabolism of cancer patients. A panel of 11 serum metabolites including markers of mitochondria! function and intermediates/products of folate-dependent one-carbon metabolism were measured in paired baseline and post-treatment sera obtained from HER2-positive breast cancer patients randomized to receive either metformin combined with neoadjuvant chemotherapy and trastuzumab or an equivalent regimen without metformin. Metabolite profiles revealed a significant increase of the ketone body beta-hydroxybutyrate and of the TCA intermediate alpha-ketoglutarate in the metformin-containing arm. A significant relationship was found between the follow-up levels of homocysteine and the ability of treatment arms to achieve a pathological complete response (pCR). In the metformin-containing arm, patients with significant elevations of homocysteine tended to have a higher probability of pCR. The addition of metformin to an established anticancer therapeutic regimen causes a fasting-mimicking modification of systemic host metabolism. Circulating homocysteine could be explored as a clinical pharmacodynamic biomarker linking the antifolate-like activity of metformin and biological tumor response

    Non-Lynch Familial and Early-Onset Colorectal Cancer Explained by Accumulation of Low-Risk Genetic Variants

    Get PDF
    A large proportion of familial and/or early-onset cancer patients do not carry pathogenic variants in known cancer predisposing genes. We aimed to assess the contribution of previously validated low-risk colorectal cancer (CRC) alleles to familial/early-onset CRC (fCRC) and to serrated polyposis. We estimated the association of CRC with a 92-variant-based weighted polygenic risk score (wPRS) using 417 fCRC patients, 80 serrated polyposis patients, 1077 hospital-based incident CRC patients, and 1642 controls. The mean wPRS was significantly higher in fCRC than in controls or sporadic CRC patients. fCRC patients in the highest (20th) wPRS quantile were at four-fold greater CRC risk than those in the middle quantile (10th). Compared to low-wPRS fCRC, a higher number of high-wPRS fCRC patients had developed multiple primary CRCs, had CRC family history, and were diagnosed at age ≥50. No association with wPRS was observed for serrated polyposis. In conclusion, a relevant proportion of mismatch repair (MMR)-proficient fCRC cases might be explained by the accumulation of low-risk CRC alleles. Validation in independent cohorts and development of predictive models that include polygenic risk score (PRS) data and other CRC predisposing factors will determine the implementation of PRS into genetic testing and counselling in familial and early-onset CRC

    The C Allele of ATM rs11212617 Associates With Higher Pathological Complete Remission Rate in Breast Cancer Patients Treated With Neoadjuvant Metformin

    Get PDF
    Background: The minor allele (C) of the single-nucleotide polymorphism (SNP) rs11212617, located near the ataxia telangiectasia mutated (ATM) gene, has been associated with an increased likelihood of treatment success with metformin in type 2 diabetes. We herein investigated whether the same SNP would predict clinical response to neoadjuvant metformin in women with early breast cancer (BC).Methods: DNA was collected from 79 patients included in the intention-to-treat population of the METTEN study, a phase 2 clinical trial of HER2-positive BC patients randomized to receive either metformin combined with anthracycline/taxane-based chemotherapy and trastuzumab or equivalent regimen without metformin, before surgery. SNP rs11212617 genotyping was assessed using allelic discrimination by quantitative polymerase chain reaction.Results: Logistic regression analyses revealed a significant relationship between the rs11212617 genotype and the ability of treatment arms to achieve a pathological complete response (pCR) in patients (odds ratio [OR]genotype×arm = 10.33, 95% confidence interval [CI]: 1.29–82.89, p = 0.028). In the metformin-containing arm, patients bearing the rs11212617 C allele had a significantly higher probability of pCR (ORA/C,C/C = 7.94, 95%CI: 1.60–39.42, p = 0.011). Conversely, no association was found between rs11212617 and clinical response in the reference arm (ORA/C,C/C = 0.77, 95%CI: 0.20–2.92, p = 0.700). After controlling for tumor size and hormone receptor status, the rs11212617 C allele remained a significant predictor of pCR solely in the metformin-containing arm.Conclusions: If reproducible, the rs11212617 C allele might warrant consideration as a predictive clinical biomarker to inform the personalized use of metformin in BC patients.Trial Registration: EU Clinical Trials Register, EudraCT number 2011-000490-30. Registered 28 February 2011, https://www.clinicaltrialsregister.eu/ctr-search/trial/2011-000490-30/ES

    Functional and Structural Analysis of C-Terminal BRCA1 Missense Variants

    Get PDF
    Germline inactivating mutations in BRCA1 and BRCA2 genes are responsible for Hereditary Breast and Ovarian Cancer Syndrome (HBOCS). Genetic testing of these genes is available, although approximately 15% of tests identify variants of uncertain significance (VUS). Classification of these variants into pathogenic or non-pathogenic type is an important challenge in genetic diagnosis and counseling. The aim of the present study is to functionally assess a set of 7 missense VUS (Q1409L, S1473P, E1586G, R1589H, Y1703S, W1718L and G1770V) located in the C-terminal region of BRCA1 by combining in silico prediction tools and structural analysis with a transcription activation (TA) assay. The in silico prediction programs gave discrepant results making its interpretation difficult. Structural analysis of the three variants located in the BRCT domains (Y1703S, W1718L and G1770V) reveals significant alterations of BRCT structure. The TA assay shows that variants Y1703S, W1718L and G1770V dramatically compromise the transcriptional activity of BRCA1, while variants Q1409L, S1473P, E1586G and R1589H behave like wild-type BRCA1. In conclusion, our results suggest that variants Y1703S, W1718L and G1770V can be classified as likely pathogenic BRCA1 mutations

    The C Allele of ATM rs11212617 Associates With Higher Pathological Complete Remission Rate in Breast Cancer Patients Treated With Neoadjuvant Metformin

    Get PDF
    Background: The minor allele (C) of the single-nucleotide polymorphism (SNP) rs11212617, located near the ataxia telangiectasia mutated (ATM) gene, has been associated with an increased likelihood of treatment success with metformin in type 2 diabetes. We herein investigated whether the same SNP would predict clinical response to neoadjuvant metformin in women with early breast cancer (BC). Methods: DNA was collected from 79 patients included in the intention-to-treat population of the METTEN study, a phase 2 clinical trial of HER2-positive BC patients randomized to receive either metformin combined with anthracycline/taxane-based chemotherapy and trastuzumab or equivalent regimen without metformin, before surgery. SNP rs11212617 genotyping was assessed using allelic discrimination by quantitative polymerase chain reaction. Results: Logistic regression analyses revealed a significant relationship between the rs11212617 genotype and the ability of treatment arms to achieve a pathological complete response (pCR) in patients (odds ratio [OR](genotypexarm) = 10.33, 95% confidence interval [CI]: 1.29-82.89, p = 0.028). In the metformin-containing arm, patients bearing the rs11212617 C allele had a significantly higher probability of pCR (ORA/C,C/C = 7.94, 95% CI: 1.60-39.42, p = 0.011). Conversely, no association was found between rs11212617 and clinical response in the reference arm (ORA/C,C/C = 0.77, 95% CI: 0.20-2.92, p = 0.700). After controlling for tumor size and hormone receptor status, the rs11212617 C allele remained a significant predictor of pCR solely in the metformin-containing arm. Conclusions: If reproducible, the rs11212617 C allele might warrant consideration as a predictive clinical biomarker to inform the personalized use of metformin in BC patients

    Neoadjuvant Metformin Added to Systemic Therapy Decreases the Proliferative Capacity of Residual Breast Cancer

    Get PDF
    The proliferative capacity of residual breast cancer (BC) disease indicates the existence of partial treatment resistance and higher probability of tumor recurrence. We explored the therapeutic potential of adding neoadjuvant metformin as an innovative strategy to decrease the proliferative potential of residual BC cells in patients failing to achieve pathological complete response (pCR) after pre-operative therapy. We performed a prospective analysis involving the intention-to-treat population of the (Metformin and Trastuzumab in Neoadjuvancy) METTEN study, a randomized multicenter phase II trial of women with primary, non-metastatic (human epidermal growth factor receptor 2) HER2-positive BC evaluating the efficacy, tolerability, and safety of oral metformin (850 mg twice-daily) for 24 weeks combined with anthracycline/taxane-based chemotherapy and trastuzumab (arm A) or equivalent regimen without metformin (arm B), before surgery. We centrally evaluated the proliferation marker Ki67 on sequential core biopsies using visual assessment (VA) and an (Food and Drug Administration) FDA-cleared automated digital image analysis (ADIA) algorithm. ADIA-based pre-operative values of high Ki67 (>= 20%), but not those from VA, significantly predicted the occurrence of pCR in both arms irrespective of the hormone receptor status (p = 0.024 and 0.120, respectively). Changes in Ki67 in residual tumors of non-pCR patients were significantly higher in the metformin-containing arm (p = 0.025), with half of all patients exhibiting high Ki67 at baseline moving into the low-Ki67 (<20%) category after neoadjuvant treatment. By contrast, no statistically significant changes in Ki67 occurred in residual tumors of the control treatment arm (p = 0.293). There is an urgent need for innovative therapeutic strategies aiming to provide the protective effects of decreasing Ki67 after neoadjuvant treatment even if pCR is not achieved. Metformin would be evaluated as a safe candidate to decrease the aggressiveness of residual disease after neoadjuvant (pre-operative) systemic therapy of BC patients

    A comprehensive custom panel design for routine hereditary cancer testing: preserving control, improving diagnostics and revealing a complex variation landscape

    Get PDF
    We wanted to implement an NGS strategy to globally analyze hereditary cancer with diagnostic quality while retaining the same degree of understanding and control we had in pre-NGS strategies. To do this, we developed the I2HCP panel, a custom bait library covering 122 hereditary cancer genes. We improved bait design, tested different NGS platforms and created a clinically driven custom data analysis pipeline. The I2HCP panel was developed using a training set of hereditary colorectal cancer, hereditary breast and ovarian cancer and neurofibromatosis patients and reached an accuracy, analytical sensitivity and specificity greater than 99%, which was maintained in a validation set. I2HCP changed our diagnostic approach, involving clinicians and a genetic diagnostics team from panel design to reporting. The new strategy improved diagnostic sensitivity, solved uncertain clinical diagnoses and identified mutations in new genes. We assessed the genetic variation in the complete set of hereditary cancer genes, revealing a complex variation landscape that coexists with the disease-causing mutation. We developed, validated and implemented a custom NGS-based strategy for hereditary cancer diagnostics that improved our previous workflows. Additionally, the existence of a rich genetic variation in hereditary cancer genes favors the use of this panel to investigate their role in cancer risk
    corecore