24 research outputs found

    Health Care for Mitochondrial Disorders in Canada: A Survey of Physicians

    Get PDF
    Background: An improved understanding of diagnostic and treatment practices for patients with rare primary mitochondrial disorders can support benchmarking against guidelines and establish priorities for evaluative research. We aimed to describe physician care for patients with mitochondrial diseases in Canada, including variation in care. Methods: We conducted a cross-sectional survey of Canadian physicians involved in the diagnosis and/or ongoing care of patients with mitochondrial diseases. We used snowball sampling to identify potentially eligible participants, who were contacted by mail up to five times and invited to complete a questionnaire by mail or internet. The questionnaire addressed: personal experience in providing care for mitochondrial disorders; diagnostic and treatment practices; challenges in accessing tests or treatments; and views regarding research priorities. Results: We received 58 survey responses (52% response rate). Most respondents (83%) reported spending 20% or less of their clinical practice time caring for patients with mitochondrial disorders. We identified important variation in diagnostic care, although assessments frequently reported as diagnostically helpful (e.g., brain magnetic resonance imaging, MRI/MR spectroscopy) were also recommended in published guidelines. Approximately half (49%) of participants would recommend mitochondrial cocktails for all or most patients, but we identified variation in responses regarding specific vitamins and cofactors. A majority of physicians recommended studies on the development of effective therapies as the top research priority. Conclusions: While Canadian physicians\u27 views about diagnostic care and disease management are aligned with published recommendations, important variations in care reflect persistent areas of uncertainty and a need for empirical evidence to support and update standard protocols

    Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society

    Get PDF
    The purpose of this statement is to provide consensus-based recommendations for optimal management and care for patients with primary mitochondrial disease. This statement is intended for physicians who are engaged in the diagnosis and management of these patients. Working group members were appointed by the Mitochondrial Medicine Society. The panel included members with several different areas of expertise. The panel members utilized surveys and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Consensus-based recommendations are provided for the routine care and management of patients with primary genetic mitochondrial disease

    Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency

    Get PDF
    BACKGROUND: Remethylation defects are rare inherited disorders in which impaired remethylation of homocysteine to methionine leads to accumulation of homocysteine and perturbation of numerous methylation reactions. OBJECTIVE: To summarise clinical and biochemical characteristics of these severe disorders and to provide guidelines on diagnosis and management. DATA SOURCES: Review, evaluation and discussion of the medical literature (Medline, Cochrane databases) by a panel of experts on these rare diseases following the GRADE approach. KEY RECOMMENDATIONS: We strongly recommend measuring plasma total homocysteine in any patient presenting with the combination of neurological and/or visual and/or haematological symptoms, subacute spinal cord degeneration, atypical haemolytic uraemic syndrome or unexplained vascular thrombosis. We strongly recommend to initiate treatment with parenteral hydroxocobalamin without delay in any suspected remethylation disorder; it significantly improves survival and incidence of severe complications. We strongly recommend betaine treatment in individuals with MTHFR deficiency; it improves the outcome and prevents disease when given early

    Lipids, blood pressure and kidney update 2015

    Full text link

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    LPIN1 deficiency with severe recurrent rhabdomyolysis and persistent elevation of creatine kinase levels due to chromosome 2 maternal isodisomy

    No full text
    Fatty acid oxidation disorders and lipin-1 deficiency are the commonest genetic causes of rhabdomyolysis in children. We describe a lipin-1-deficient boy with recurrent, severe rhabdomyolytic episodes from the age of 4 years. Analysis of the LPIN1 gene that encodes lipin-1 revealed a novel homozygous frameshift mutation in exon 9, c.1381delC (p.Leu461SerfsX47), and complete uniparental isodisomy of maternal chromosome 2. This mutation is predicted to cause complete lipin-1 deficiency. The patient had six rhabdomyolytic crises, with creatine kinase (CK) levels up to 300,000 U/L (normal, 30 to 200). Plasma CK remained elevated between crises. A treatment protocol was instituted, with early aggressive monitoring, hydration, electrolyte replacement and high caloric, high carbohydrate intake. The patient received dexamethasone during two crises, which was well-tolerated and in these episodes, peak CK values were lower than in preceding episodes. Studies of anti-inflammatory therapy may be indicated in lipin-1 deficiency

    Acute pediatric hyperammonemia: current diagnosis and management strategies

    No full text
    Nadia Savy,1 David Brossier,2 Catherine Brunel-Guitton,1 Laurence Ducharme-Crevier,1 Geneviève Du Pont-Thibodeau,1 Philippe Jouvet1 1Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada; 2Department of Pediatrics, Pediatric Intensive Care Unit, CHU Caen, Caen, France Abstract: Acute hyperammonemia may induce a neurologic impairment leading to an acute life-threatening condition. Coma duration, ammonia peak level, and hyperammonemia duration are the main risk factors of hyperammonemia-related neurologic deficits and death. In children, hyperammonemia is mainly caused by severe liver failure and inborn errors of metabolism. In an acute setting, obtaining reliable plasma ammonia levels can be challenging because of the preanalytical difficulties that need to be addressed carefully. The management of hyperammonemia includes 1) identification of precipitating factors and cerebral edema presence, 2) a decrease in ammonia production by reducing protein intake and reversing catabolism, and 3) ammonia removal with pharmacologic treatment and, in the most severe cases, with extracorporeal therapies. In case of severe coma, transcranial Doppler ultrasound could be the method of choice to noninvasively monitor cerebral blood flow and titrate therapies. Keywords: pediatrics, critical care, hyperammonemia, sodium phenylacetate, sodium benzoate, hemodialysi

    An N-terminal formyl methionine on COX 1 is required for the assembly of cytochrome c oxidase

    No full text
    Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was approximately 350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated
    corecore