70 research outputs found

    Effect of initial correlations on short-time decoherence

    Full text link
    We study the effect of initial correlations on the short-time decoherence of a particle linearly coupled to a bath of harmonic oscillators. We analytically evaluate the attenuation coefficient of a Schroedinger cat state both for a free and a harmonically bound particle, with and without initial thermal correlations between the particle and the bath. While short-time decoherence appears to be independent of the system in the absence of initial correlations, we find on the contrary that, for initial thermal correlations, decoherence becomes system dependent even for times much shorter than the characteristic time of the system. The temperature behavior of this system dependence is discussed.Comment: 7 pages, 1 figur

    Modelling the Recoherence of Mesoscopic Superpositions in Dissipative Environments

    Full text link
    A model is presented to describe the recently proposed experiment (J. Raimond, M. Brune and S. Haroche Phys. Rev. Lett {\bf 79}, 1964 (1997)) where a mesoscopic superposition of radiation states is prepared in a high-Q cavity which is coupled to a similar resonator. The dynamical coherence loss of such state in the absence of dissipation is reversible and can in principle be observed. We show how this picture is modified due to the presence of the environmental couplings. Analytical expressions for the experimental conditional probabilities and the linear entropy are given. We conclude that the phenomenon can still be observed provided the ratio between the damping constant and the inter-cavities coupling does not exceed about a few percent. This observation is favored for superpositions of states with large overlap.Comment: 13 pages, 6 figure

    An quantum approach of measurement based on the Zurek's triple model

    Full text link
    In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach for quantum measurement is proposed based on Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516 (1981)]. An exactly-solvable model based on the intracavity system is dealt with in details to demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus from its many degrees of freedom, as the pointer of the apparatus, the collective variable de-couples with the internal environment formed by the effective internal variables, but still interacts with the measured system to form a triple entanglement among the measured system, the pointer and the internal environment. As another mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be summed up to an ideal entanglement or an Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure

    Decoherence and Initial Correlations in Quantum Brownian Motion

    Full text link
    We analyze the evolution of a quantum Brownian particle starting from an initial state that contains correlations between this system and its environment. Using a path integral approach, we obtain a master equation for the reduced density matrix of the system finding relatively simple expressions for its time dependent coefficients. We examine the evolution of delocalized initial states (Schr\"odinger's cats) investigating the effectiveness of the decoherence process. Analytic results are obtained for an ohmic environment (Drude's model) at zero temperature.Comment: 15 pages, RevTex, 5 figures included. Submitted to Phys. Rev.

    Decoherence in Bose-Einstein Condensates: towards Bigger and Better Schroedinger Cats

    Full text link
    We consider a quantum superposition of Bose-Einstein condensates in two immiscible internal states. A decoherence rate for the resulting Schroedinger cat is calculated and shown to be a significant threat to this macroscopic quantum superposition of BEC's. An experimental scenario is outlined where the decoherence rate due to the thermal cloud is dramatically reduced thanks to trap engineering and "symmetrization" of the environment which allow for the Schroedinger cat to be an approximate pointer states.Comment: 12 pages in RevTex; improved presentation; a new comment on decoherence-free pointer subspaces in BEC; accepted in Phys.Rev.

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199

    Decoherence: Concepts and Examples

    Get PDF
    We give a pedagogical introduction to the process of decoherence - the irreversible emergence of classical properties through interaction with the environment. After discussing the general concepts, we present the following examples: Localisation of objects, quantum Zeno effect, classicality of fields and charges in QED, and decoherence in gravity theory. We finally emphasise the important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in the Proceedings of the 10th Born Symposiu

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure
    corecore