29 research outputs found

    Reliability History and Improvements to the ANL 50 MEV H- Accelerator

    Full text link
    The H- Accelerator consists of a 750 keV Cockcroft Walton preaccelerator and an Alvarez type 50 MeV linac. The accelerator has been in operation since 1961. Since 1981, it has been used as the injector for the Intense Pulsed Neutron Source (IPNS), a national user facility for neutron scattering. The linac delivers about 3.5x1012 H- ions per pulse, 30 times per second (30 Hz), for multi-turn injection to a 450 MeV Rapid Cycling Synchrotron (RCS). IPNS presently operates about 4,000 hours per year, and operating when scheduled is critical to meeting the needs of the user community. For many years the IPNS injector/RCS has achieved an average reliability of 95%, helped in large part by the preaccelerator/linac which has averaged nearly 99%. To maintain and improve system reliability, records need to show what each subsystem contributes to the total down time. The history of source and linac subsystem reliability, and improvements that have been made to improve reliability, will be described. Plans to maintain or enhance this reliability for at least another ten years of operation, will also be discussed.Comment: 3 pages, 1 figur

    A Real-Time Energy Monitor System for the Ipns Linac

    Get PDF
    Injected beam energy and energy spread are critical parameters affecting the performance of our rapid cycling synchrotron (RCS). A real-time energy monitoring system is being installed to examine the H- beam out of the Intense Pulsed Neutron Source (IPNS) 50 MeV linac. The 200 MHz Alvarez linac serves as the injector for the 450 MeV IPNS RCS. The linac provides an 80 ms macropulse of approximately 3x1012 H- ions 30 times per second for coasting-beam injection into the RCS. The RCS delivers protons to a heavy-metal spallation neutron target for material science studies. Using a number of strip-line beam position monitors (BPMs) distributed along the 50 MeV transport line from the linac to the RCS, fast signals from the strip lines are digitized and transferred to a computer which performs an FFT. Corrections for cable attenuation and oscilloscope bandwidth are made in the frequency domain. Rectangular pulse train phasing (RPTP) is imposed on the spectra prior to obtaining the inverse transform (IFFT). After the IFFT, the reconstructed time-domain signal is analyzed for pulse width as it progresses along the transport line. Time-of-flight measurements of the BPM signals provide beam energy. Finally, using the 3-size measurement technique, the longitudinal emittance and energy spread of the beam are determined

    Bunch stabilization using rf phase modulation in the intense pulse neutron source (IPNS) rapid cycling synchrotron (RCS)

    Full text link
    Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotrons frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}

    Hormonal signaling in cnidarians : do we understand the pathways well enough to know whether they are being disrupted?

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs

    Myelin Proteomics: Molecular Anatomy of an Insulating Sheath

    Get PDF
    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies
    corecore