19 research outputs found

    Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping

    Get PDF
    Background: Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings: In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing M<8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts <= 42 cycles in internal transcribed spacer-real time PCR. Conclusions: These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available (http://ifr48.timone.univ-mrs.fr/MST_MTuberculosis/mst)

    Clostridium difficile infection.

    Get PDF
    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota

    Identification of respiratory virus in infants with congenital heart disease by comparison of different methods

    Get PDF
    Respiratory virus infections are the main cause of infant hospitalization and are potentially severe in children with congenital heart disease (CHD). Rapid and sensitive diagnosis is very important to early introduction of antiviral treatment and implementation of precautions to control transmission, reducing the risk of nosocomial infections. In the present study we compare different techniques in the diagnosis of respiratory viruses in CHD infants. Thirty-nine samples of nasopharyngeal aspirate were obtained from CHD infants with symptoms of respiratory infection. The Multiplex PCR (Seeplex® RV 12 ACE Detection) driven to the detection of 12 respiratory viruses was compared with the direct immunofluorescence assay (DFA) and PCR, both targeting seven respiratory viruses. The positivity found by DFA, Multiplex and PCR was 33.3%, 51.3% and 48.7%, respectively. Kappa index comparing DFA and Multiplex, DFA and PCR and PCR and Multiplex PCR was 0.542, 0.483 and 0.539, respectively. The concordance between techniques was considered moderate. Both Multiplex PCR (p = 0.001) and PCR (p = 0.002) detected significantly more respiratory virus than DFA. As the performance of the tests may vary, the combination of two or more techniques may increase diagnostic sensitivity favoring the diagnosis of co-infections, early introduction of antiviral therapy and implementation of appropriate measures
    corecore