197 research outputs found

    Machine learning approaches in medical image analysis: From detection to diagnosis

    Get PDF
    Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results

    Why Does Synthesized Data Improve Multi-sequence Classification?

    Get PDF
    The classification and registration of incomplete multi-modal medical images, such as multi-sequence MRI with missing sequences, can sometimes be improved by replacing the missing modalities with synthetic data. This may seem counter-intuitive: synthetic data is derived from data that is already available, so it does not add new information. Why can it still improve performance? In this paper we discuss possible explanations. If the synthesis model is more flexible than the classifier, the synthesis model can provide features that the classifier could not have extracted from the original data. In addition, using synthetic information to complete incomplete samples increases the size of the training set. We present experiments with two classifiers, linear support vector machines (SVMs) and random forests, together with two synthesis methods that can replace missing data in an image classification problem: neural networks and restricted Boltzmann machines (RBMs). We used data from the BRATS 2013 brain tumor segmentation challenge, which includes multi-modal MRI scans with T1, T1 post-contrast, T2 and FLAIR sequences. The linear SVMs appear to benefit from the complex transformations offered by the synthesis models, whereas the random forests mostly benefit from having more training data. Training on the hidden representation from the RBM brought the accuracy of the linear SVMs close to that of random forests

    Transfer learning improves supervised image segmentation across imaging protocols

    Get PDF
    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%

    Spectral Data Augmentation Techniques to quantify Lung Pathology from CT-images

    Full text link
    Data augmentation is of paramount importance in biomedical image processing tasks, characterized by inadequate amounts of labelled data, to best use all of the data that is present. In-use techniques range from intensity transformations and elastic deformations, to linearly combining existing data points to make new ones. In this work, we propose the use of spectral techniques for data augmentation, using the discrete cosine and wavelet transforms. We empirically evaluate our approaches on a CT texture analysis task to detect abnormal lung-tissue in patients with cystic fibrosis. Empirical experiments show that the proposed spectral methods perform favourably as compared to the existing methods. When used in combination with existing methods, our proposed approach can increase the relative minor class segmentation performance by 44.1% over a simple replication baseline.Comment: 5 pages including references, accepted as Oral presentation at IEEE ISBI 202

    Crowdsourcing Airway Annotations in Chest Computed Tomography Images

    Get PDF
    Measuring airways in chest computed tomography (CT) scans is important for characterizing diseases such as cystic fibrosis, yet very time-consuming to perform manually. Machine learning algorithms offer an alternative, but need large sets of annotated scans for good performance. We investigate whether crowdsourcing can be used to gather airway annotations. We generate image slices at known locations of airways in 24 subjects and request the crowd workers to outline the airway lumen and airway wall. After combining multiple crowd workers, we compare the measurements to those made by the experts in the original scans. Similar to our preliminary study, a large portion of the annotations were excluded, possibly due to workers misunderstanding the instructions. After excluding such annotations, moderate to strong correlations with the expert can be observed, although these correlations are slightly lower than inter-expert correlations. Furthermore, the results across subjects in this study are quite variable. Although the crowd has potential in annotating airways, further development is needed for it to be robust enough for gathering annotations in practice. For reproducibility, data and code are available online: \url{http://github.com/adriapr/crowdairway.git}

    Hydranet: Data Augmentation for Regression Neural Networks

    Full text link
    Deep learning techniques are often criticized to heavily depend on a large quantity of labeled data. This problem is even more challenging in medical image analysis where the annotator expertise is often scarce. We propose a novel data-augmentation method to regularize neural network regressors that learn from a single global label per image. The principle of the method is to create new samples by recombining existing ones. We demonstrate the performance of our algorithm on two tasks: estimation of the number of enlarged perivascular spaces in the basal ganglia, and estimation of white matter hyperintensities volume. We show that the proposed method improves the performance over more basic data augmentation. The proposed method reached an intraclass correlation coefficient between ground truth and network predictions of 0.73 on the first task and 0.84 on the second task, only using between 25 and 30 scans with a single global label per scan for training. With the same number of training scans, more conventional data augmentation methods could only reach intraclass correlation coefficients of 0.68 on the first task, and 0.79 on the second task.Comment: accepted in MICCAI 201
    corecore